簡易檢索 / 詳目顯示

研究生: 吳怡君
Wu, Yi-Jiun
論文名稱: 不同電紡纖維對聚丙烯穿晶形成能力的影響
Effect of various electrospun fibers on the transcrystallization of polypropylene
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 118
中文關鍵詞: 聚丙烯穿晶電紡纖維原子力顯微鏡
外文關鍵詞: polypropylene, transcrystallization, electrospun fiber, AFM
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以偏光顯微鏡在全偏光模式下觀察聚丙烯 (iPP)在電紡纖維表面穿晶形成過程,並分析其穿透光強度變化,藉由穿透光強度會隨晶核增加而上升的關係,可得晶核在纖維表面出現的初始溫度 (Ti),此溫度之高低可判斷何種纖維誘導iPP穿晶的能力較佳。利用此方法可彌補當電紡纖維太細時無法細數核子的缺點。

    首先探討纖維擺放方式、樣品厚度及降溫速率對穿透光強度分析造成的影響。後固定以4 oC/min降溫觀察不同纖維誘導iPP產生穿晶的過程,並以分析所得Ti比較纖維成核能力依序為:PBT > PTFE > PVA > iPS > PBO > PET > Nylon > sPS。改變不同降溫速率時,iPP在纖維上的成核行為也不同,降溫速率愈快,Ti愈低。利用不同降溫速率所得Ti外插至速率為零時的值估算此纖維可形成穿晶的最高溫度。

    實驗發現iPS纖維能誘導iPP產生beta晶體,降溫速率愈快,beta晶體數量愈多。iPP纖維在外觀熔化後仍具有優先成核的能力,顯示分子鏈順向度還存在;且隨著升溫次數愈多,成核位置會愈遠離纖維,顯示分子鏈有往外擴散的情況。由原子力顯微鏡可得纖維表面粗糙度依序為:PBO>PBT>iPS>PET>Nylon>PVA>sPS,在此發現纖維的Ti與粗糙度無太大關聯,而與纖維本質較相關。

    Transcrystallization of polypropylene (iPP) on various as-spun fibers is investigated using a polarized optical microscope. By measuring the transmitted light intensity under cross-polarized microscopy, the initiation temperature (Ti) for transcrystallization was determined to represent the nucleating ability of fibers.

    First, we studied on the effects of fiber direction, sample thickness, and cooling rates on the transmitted light intensity. Then we compared the Ti of various fibers by fixing the cooling rate of 4 oC/min. The nucleating ability of fibers can be ranked as follows: PBT > PTFE > PVA > iPS > PBO > PET > Nylon > sPS. Ti significantly depends on the cooling rate; the higher the cooling rate is, the lower the Ti obtained. We can estimate the maximum temperature for transcrystalline layer to develop by extrapolation of Ti at cooling rate zero.

    iPS fibers can induce the beta-crystal form of iPP during cooling. The content of beta-crystal form increases with increasing cooling rate. iPP fibers can induce nucleus earlier than the bulk, revealing that the chain orientation of fiber is preserved. The nucleated site is gradually far away from the fiber after repeatedly heating cycles. It indicates that the oriented polymer chains diffuse to the bulk. Surface morphology is revealed by atomic force microscope (AFM). The order of fiber surface roughness is : PBO>PBT>iPS>PET>Nylon>PVA>sPS. Our results showed that Ti has no significant relationship with surface roughness but depends on the intrinsic property of fibers.

    摘要 i Abstract ii 誌謝 iii 目錄 v 表目錄 vii 圖目錄 viii 符號說明 xi 一、前言 1 二、簡介 3 三、文獻回顧 6 3.1 基材 6 3.2 纖維 7 3.3 纖維/基材之複合材料 13 四、理論 26 4.1 核化速率與induction time間的關係 26 4.2 表面誘導理論 26 4.3 以原子力顯微鏡求纖維粗糙度 27 五、實驗 28 5.1 實驗材料與樣品 28 5.2 實驗儀器 30 5.3 實驗步驟 31 5.3.1 偏光顯微鏡觀察穿晶 31 5.3.2 穿透光強度分析法 32 5.3.3 掃描式電子顯微鏡觀察纖維 33 5.3.4 原子力顯微鏡量測纖維粗糙度 33 5.3.5 示差掃描卡計量測纖維熱性質 33 六、結果與討論 34 6.1 樣品製備與分析方法 34 6.1.1 電紡纖維製備 34 6.1.2 穿透光強度變化之分析 34 6.1.3 纖維擺放方向與樣品厚度之影響 35 6.1.4 降溫速率對纖維成核能力之影響 36 6.2 iPP在不同纖維表面的穿晶行為 37 6.2.1 不同纖維成核能力比較 37 6.2.2 降溫速率對PBT纖維誘導iPP成核能力之影響 38 6.2.3 降溫速率對iPS纖維誘導iPP成核能力之影響 39 6.2.4 iPP在iPP纖維表面的穿晶行為 40 6.3 纖維特性比較 42 6.3.1纖維熱性質 42 6.3.2纖維表面形態 43 七、結論 77 八、參考文獻 78 九、自述 85 十、附錄 86

    [1] D. W. Clegg, A. A. Collyer, ”Mechanical Properties of Reinforced Thermoplastics”, Elsevier, London, p.2 (1986).
    [2] F. G. Krautz, “Glass fiber enhances high-temperature prepormance of thermoplastics.” Society of Plastic Engineers, 27, 74 (1971).
    [3] R. H. Burton, M. J. Folkes, “Interfacial morphology in short fibre reinforced thermoplastics.” Plastic and Rubber Processing and Applications, 3, 129 (1983).
    [4] H. H. Li, X. Q. Zhang, Y. X. Duan, D. J. Wang, L. Li, S. K. Yan, “Influence of crystallization temperature on the morphologies of isotactic polypropylene single-polymer composite.” Polymer, 45, 8064 (2004).
    [5] C. Wang, C. R. Liu, “Transcrystallization of PTFE fiber PP composites. 1. Crystallization kinetics and morphology.” Journal of Polymer Science, Part B-Polymer Physics, 34, 47 (1996).
    [6] J. Loos, T. Schimanski, J. Hofman, T. Peijs, P. J. Lemstra, “Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites.” Polymer, 42, 3827 (2001).
    [7] T. E. Sukhanova, F. Lednicky, J. Urban, Y. G. Baklagina, G. M. Mikhailov, V. V. Kudryavtsev, “Morphology of melt crystallized polypropylene in the presence of polyimide fibers.” Journal of Materials Science, 30, 2201 (1995).
    [8] D. G. Gray, J. E. Guillet, “Open tubular columns for studies on polymer stationary phases by gas chromatography.” Journal of Polymer Science. Polymer Physics Edition,12, 231 (1974).
    [9] C. Wang, C. R. Liu, “Transcrystallization of PTFE fiber PP composites. III. Effect of fiber pulling on the crystallization kinetics.” Journal of Polymer Science, Part B-Polymer Physics, 36, 289 (1998).
    [10] J. L. Thomason, A. A. Van Rooyen, “Transcrystallized interphase in thermoplastic composites. 2. Influence of interfacial stress, cooling rate, fiber properties and polymer molecular-weight.” Journal of Materials Science, 27(4), 897 (1992).
    [11] Y. Q. Cai, J. Petermann, H. Wittich, “Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient.” Journal of Applied Polymer Science, 65, 67 (1997).
    [12] E. J. H. Chen, B. S. Hsiao, “The effects of transcrystalline interphase in advanced polymer composites.” Polymer Engineering and Science, 32, 280 (1992).
    [13] H. Schonhorn, F. W. Ryan, ”Effect of morphology in the surface region of polymers on adhesion and adhesive joint strength.” Journal of Polymer Science, 6, 231 (1968).
    [14] K. Cho, D. Kim, S. Yoon, “Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers.” Macromolecules, 36, 7652 (2003).
    [15] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and morphology of poly(propylenes): a molecular analysis.” Polymer, 37, 4979 (1996).
    [16] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.” Progress in Polymer Science, 16, 361 (1991).
    [17] L. H. Sperling, “Introduction to Physical Polymer Science”, 2ed, Willey, New York, Chap.6 (1992).
    [18] J. D. Cho, W. S. Lyoo, S. N. Chvalun, J. Blackwell, “X-ray analysis and molecular modeling of poly(vinyl alcohol) with different stereoregularities.” Macromolecules, 32,6236 (1999).
    [19] C. M. Hassan, N. A. Peppas, “Structure and morphology of freeze/thawed PVA hydrogels.” Macromolecules, 33, 2472 (2000).
    [20] R. Endo, S. Amiya, M. Hikosaka, “Conditions for melt crystallization without thermal degradation and equilibrium melting temperature degradation and equilibrium melting temperature.” Journal of Macromolecular Science, Part B, 3, 793 (2003).
    [21] D. R. Holmes, C. W. Bunn, D. J. Smith, “The crystal structure of polycaproamide: nylon6.” Journal of polymer science, 27, 159 (1965).
    [22] H. Arimoto, M. Ishibashi, M. Hirai, Y. Chatani, “Crystal structure of gamma-forn of nylon6.” Journal of Polymer Science, Part A-general papers, 3, 317 (1965).
    [23] G. M. Kim, G. H. Michler, F. Ania, F. J. Balta Calleja, “Temperature dependence of polymorphism in electrospun nanofibres of PA6 and PA6/clay nanocomposite.” Polymer, 48, 4814 (2007).
    [24] R. de P. Daubeny, C. W. Bunn, C. J. Brown, “The crystal structure of polyethylene terephthalate.” Proceedings of the Royal Society A, 226, 531 (1954).
    [25] X. F. Lu, J. N. Hay, “Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate).” Polymer, 42, 9423 (2001).
    [26] H. W. Starkweather, J. R. Paul Zoller, G. A. Jones, “The Heat of Fusion of Poly(ethy1ene Terephthalate).” Journal of Polymer Science: Polymer Physics Edition, 21, 295 (1983).
    [27] R. Jakeways, I. M. Ward, M. A. Wilding, I. H. Hall, I. J. Desborough, M. G. Pass, “Crystal deformation in aromatic polyesters.” Journal of Polymer Science: Polymer Physics Edition, 13, 799 (1975).
    [28] K. Qi, K. Nakayama, “Structure formation and miscibility of sheets from PBT and LCP blends.” Journal of Materials Science, 36, 3207 (2001).
    [29] A. Kaito, K. Nakayama, Zubaidi, “Structure formation in stretched sheets of poly(butylene terephthalate).” Journal of Applied Polymer Science, 45, 1203 (1992).
    [30] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, “Crystalline syndiotactic polystyrene.” Macromolecules, 19, 2465 (1986).
    [31] J. W. Ha, K. J. Chu, “Molecular weight distribution of syndiotactic polystyrenes prepared over difference kind of catalysts.” Materials Letters, 33, 149 (1997).
    [32] Z. Su, M. Dong, Z. Guo, J. Yu, “Study of polystyrene and acrylonitrile-styrene copolymer as special -nucleating agents to induce the crystallization of isotactic polypropylene.” Macromolecules, 40, 4217 (2007).
    [33] P. J. Lemstra, J. Postma, G. Challa, “Molecular weight dependence of the spherulitic growth rate of isotactic polystyrene.” Polymer, 15, 757 (1974).
    [34] T. Liu, J. Petermann, “Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene.” Polymer, 42, 6453 (2001).
    [35] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, R. Kokawa, “Growth shape of isotactic polystyrene crystal in thin films.” Polymer, 42, 7443 (2001).
    [36] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, R. Kokawa, “Crystal growth of isotactic polystyrene in ultrathin films : film thickness dependence.” Journal of Macromolecular Science: Physics, B41, 1033 (2002).
    [37] K. L. Beers, J. F. Douglas, E. J. Amis, A. Karim, “Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene.” Langmuir, 19, 3935 (2003).
    [38] A. Phillips, P. W. Zhu, G. Edward, “Polystyrene as a versatile nucleating agent for polypropylene.” Polymer, 51, 1599 (2010).
    [39] S. Cimmino, E. DiPace, E. Martuscelli, C. Silvestre, “Syndiotactic polystyrene – crystallization and melting behavior.” Polymer, 32, 1080 (1991).
    [40] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples.” Macromolecule, 23, 1539 (1990).
    [41] A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons.” Polymer Engineering and Science, 37, 153 (1997).
    [42] O. Greis, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene.” Polymer, 30, 590 (1989).
    [43] C. De. Rosa, G Guerra, V. Petraccone, P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene.” Polymer Journal, 23, 1435 (1991).
    [44] E. J. C. Kellar, C. Galiotis, E. H. Andrews, “Raman vibrational studies of syndiotactic polystyrene. 1. Assignments in a conformational / crystallinity sensitive spectral region.” Macromolecules, 29, 3515 (1996).
    [45] F. Auriemma, V. Petraccone, F. Dal Poggetto, C. De Rosa, G. Guerra, C. ManFredi, P. Corradini, “Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal () crystalline form.” Macromolecules, 26, 3772 (1993).
    [46] C. Wang, C. L. Huang, Y. W. Cheng, Y. C. Chen, J. Shong, “Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with beta’-crystalline form.” Polymer, 48, 7393 (2007).
    [47] A. Sharples, “Introduction to Polymer Crystallization”, London, p15 (1966).
    [48] T. K. Kwei, H. Schonhorn, H. L. Frisch, “Dynamic mechantical properties of transcrystalline regions in 2 polyplefins.” Journal of Applied Physics, 38, 2512 (1967).
    [49] T. Bessel, D. Hull, J. B. Shortall, “Interface morphology and mechanical properties of unidirectional fibre reinforced nylon6.” Faraday Special Discussions of the Chemical Society, 2, 137 (1972).
    [50] D. Campbell, M. M. Qayyum, “Enhanced fracture strain of polypropylene by incorporation of thermoplastic fibers.” Journal of Materials Science, 12, 2427 (1977).
    [51] T. Hardwich, PhD thesis, Brunel University, UK (1987).
    [52] T. Hata, K. Ohaska, T. Yamada, N. Shibata, T. Matsumoto, Proc. 16th Annual Symposium, Adhesion Society, Williamsburg, VA, February, 180 (1993).
    [53] M. J. Folkes, S. T. Hardwick, “Direct study of the structure and properties of transcrystalline layers.” Journal of Materials Science Letters, 6, 656 (1987).
    [54] J. L. Thomason, A. A. Van Rooyen, “Transcrystallized interphase in thermalplastic composites. 1. Influence of fiber type and crystallization temperature.” Journal of Materials Science, 27(4), 889 (1992).
    [55] C. Wang, C. R. Liu, “Transcrystallization of polypropylene composites: nucleating ability of fibres.” Polymer, 40, 289 (1999).
    [56] C. Wang, F. H. Liu, W. H. Hung, “Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix.” Polymer, 52, 1326 (2011).
    [57] N. W. Hayes, G. Beamson, D. T. Clark, D. T. Clarke, D. S. L. Law, “Atomic force microscopy and Fourier transform infra-red studies of the influence of a highly oriented poly(tetrafluoroethylene) substrate on poly(ethylene terephthalate) overlayers.” Polymer, 37, 523 (1996).
    [58] H. Ishida, P. Bussi, “Induction time approach to surface induced crystallization in polyethylene poly (epsilon-caprolactone) melt.” Journal of Materials Science, 26, 6373 (1991).
    [59] H. Ishida, P. Bussi, “Surface Induced Crystallization in Ultra-high Modulus Polyethylene Fiber Reinforced Poly(e-caprolactone) Composite,” Polymeric Preprints, 31, 539 (1990).
    [60] H. H. Li, S. D. Jiang, J. J. Wang, S. K. Yan, “Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers.” Macromolecules, 36, 2802 (2003).
    [61] J. Varga, J. Karger-Kocsis, “Rules of supermolecular structure formation in sheared isotactic polypropylene melts.” Journal of Polymer Science, Part B-Polymer Physics, 34, 657 (1996).

    下載圖示 校內:2012-08-23公開
    校外:2013-08-23公開
    QR CODE