| 研究生: |
鄭婉淑 Cheng, Wan-Shu |
|---|---|
| 論文名稱: |
應用於癌症之個人醫療預後的全基因體生物標誌組之探勘及檢驗分析 Independent Epigenetic Prognostic Marker Panel Mining and Examining for Cancers Personalized Medicine through Genome-scale Analysis |
| 指導教授: |
蔣榮先
Chiang, Jung-Hsien |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 癌症系統生物學 、系統醫學 、膠質母細胞瘤 、漿液性卵巢癌 、乳癌 、DNA甲基化 、預後生物標誌 |
| 外文關鍵詞: | Cancer Systems Biology, Systems Medicine, Glioblastoma Multiforme, High-grade Serous Ovarian Cancer, Invasive Breast Carcinoma, DNA methylation, Prognosis Biomarker |
| 相關次數: | 點閱:112 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期發現早期治療是癌症研究的主要目標。而DNA甲基化的異常可在癌症早期發現使得DNA甲基化生物標誌深具潛力。人類癌症的DNA甲基化變異及特定甲基化的改變通常與臨床特徵具相關性。DNA甲基化的生物標誌為早期發現、診斷、預後、分層治療及治療後療效監測提供了很大的潛力。再者,如何評價所取得的生物標誌之信心品質在個人化醫療同時也是一個很重要的議題。在本論文中,我們透過與人類胚胎幹細胞相關基因的甲基化狀態提出了一個新的策略以區分膠質母細胞瘤(Glioblastoma)病人之亞型並粹取出預後生物標誌組。接著,我們透過卵巢癌(High-grade Serous Ovarian Cancer)及乳癌(Breast Cancre)設計了一個評估生物標誌品質之機制,所設計的生物標誌品質評估機制將可自由運用至各種測試評估階段。由本研究之各實驗及統計檢定驗證之結果,顯示了所開發之方法,具強韌性且可取得各種癌症可信之預後型生物標誌。最後,本論文從膠質母細胞瘤,卵巢癌及乳癌所萃取出之生物標誌,不論其基因組在臨床試驗中,及未來個人化醫療措施,均深具未來應用及開發之潛力。
Achieving early detection of the onset of cancer is a major goal of cancer research. The early presence of aberrant DNA methylation makes the use of DNA methylation biomarkers an attractive possibility for early detection. Altered DNA methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. DNA methylation biomarkers provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic stratification and post-therapeutic monitoring. How to evaluate the obtained biomarkers is an another important issue in personalized medicine. In the dissertation, we propose a novel strategy can be used to stratify glioblastoma multiform (GBM) patients through the epigenetic states of genes associated with human embryonic stem cell (hESC) identity and the refined prognostic marker panel was extracted. Then, an evaluated mechanism for measuring the confident quality of biomarkers was established through high-grade serous ovarian cancer (HGSOC) and breast cancer. One could utilize the developed package for evaluating the quality of biomarkers in any stage of development. The dissertation contributed to 1) a strategy was established for stratifying cancer patients; 2) the refined prognostic marker panels are strong connected with literature with the potential for considering into clinical assay for patients’ stratification and future personalized medicine interventions; 3) a statistical examining mechanism was established for the confident quality of biomarkers measuring.
REFERENCES
Adrian, B. The essentials of DNA methylation. Cell 70, 5-8, 1992.
Ahuja, N., Li, Q., Mohan, A.L., Baylin, S.B., and Issa, J.-P.J. Aging and DNA Methylation in Colorectal Mucosa and Cancer. Cancer Research 58, 5489-5494, 1998.
Aigner, L., Arber, S., Kapfhammer, J.P., Laux, T., Schneider, C., Botteri, F., Brenner, H.-R., and Caroni, P. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 269-278, 1995.
Assou, S., Le Carrour, T., Tondeur, S., Ström, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Réme, T., Hugnot, J.-P., et al. A Meta-Analysis of Human Embryonic Stem Cells Transcriptome Integrated into a Web-Based Expression Atlas. Stem Cells 25, 961-973, 2007.
Auffray, C., Charron, D., and Hood, L. Predictive, preventive, personalized and participatory medicine: back to the future. Genome Medicine 2, 57, 2010.
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development 17, 126-140, 2003.
Bao, S., Wu, Q., Li, Z., Sathornsumetee, S., Wang, H., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth. Cancer Research 68, 6043-6048, 2008.
Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760, 2006a.
Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research 66, 7843-7848, 2006b
Bassi, D.E., Lopez De Cicco, R., Cenna, J., Litwin, S., Cukierman, E., and Klein-Szanto, A.J.P. PACE4 Expression in Mouse Basal Keratinocytes Results in Basement Membrane Disruption and Acceleration of Tumor Progression. Cancer Research 65, 7310-7319, 2005
Baylin, S.B., and Ohm, J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107-116, 2006.
Baylln, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.-P. Alterations in DNA Methylation: A Fundamental Aspect of Neoplasia. In Advances in Cancer Research, F.V.W. George, and K. George, eds. (Academic Press), pp. 141-196, 1997.
Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and Weinberg, R.A. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40, 499-507, 2008.
Benowitz, L.I., and Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends in Neurosciences 20, 84-91, 1997.
Bowles, J., Schepers, G., and Koopman, P. Phylogeny of the SOX Family of Developmental Transcription Factors Based on Sequence and Structural Indicators. Developmental Biology 227, 239-255, 2000.
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al. Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell 122, 947-956, 2005.
Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T.M., Rubenstein, J.L.R., and Ericson, J. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622-627, 1999.
C. Way, J., and A. Silver, P. Systems engineering without an engineer: Why we need systems biology. Complexity 13, 22-29, 2007.
Cai, K.Q., Caslini, C., Capo-chichi, C.D., Slater, C., Smith, E.R., Wu, H., Klein-Szanto, A.J., Godwin, A.K., and Xu, X.-X. Loss of GATA4 and GATA6 Expression Specifies Ovarian Cancer Histological Subtypes and Precedes Neoplastic Transformation of Ovarian Surface Epithelia. PLoS ONE 4, e6454, 2009.
Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell 11, 69-82, 2007.
Capo-chichi, C.D., Roland, I.H., Vanderveer, L., Bao, R., Yamagata, T., Hirai, H., Cohen, C., Hamilton, T.C., Godwin, A.K., and Xu, X.-X. Anomalous Expression of Epithelial Differentiation-determining GATA Factors in Ovarian Tumorigenesis. Cancer Research 63, 4967-4977, 2003.
Capo-chichi, C.D., Rula, M.E., Smedberg, J.L., Vanderveer, L., Parmacek, M.S., Morrisey, E.E., Godwin, A.K., and Xu, X.-X. Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells. Developmental Biology 286, 574-586, 2005.
Caslini, C., Capo-chichi, C.D., Roland, I.H., Nicolas, E., Yeung, A.T., and Xu, X.X. Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene 25, 5446-5461, 2006.
Chen, W.-D., Han, Z.J., Skoletsky, J., Olson, J., Sah, J., Myeroff, L., Platzer, P., Lu, S., Dawson, D., Willis, J., et al. Detection in Fecal DNA of Colon Cancer–Specific Methylation of the Nonexpressed Vimentin Gene. Journal of the National Cancer Institute 97, 1124-1132, 2005.
Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., Westphal, H., and Beachy, P.A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407-413, 1996.
Das, P.M., and Singal, R. DNA Methylation and Cancer. Journal of Clinical Oncology 22, 4632-4642, 2004.
Dennis, G., Sherman, B., Hosack, D., Yang, J., Gao, W., Lane, H., and Lempicki, R. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 4, R60, 2003.
Dent, E.W., and Meiri, K.F. Distribution of phosphorylated GAP-43 (neuromodulin) in growth cones directly reflects growth cone behavior. Journal of Neurobiology 35, 287-299, 1998.
deVos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., Steiger, K.V., Grützmann, R., Pilarsky, C., Habermann, J.K., et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clinical Chemistry 55, 1337-1346, 2009.
Ericson, J., Muhr, J., Placzek, M., Lints, T., Jessel, T.M., and Edlund, T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: A common signal for ventral patterning within the neural tube. Cell 81, 747-756, 1995.
Ershler, W.B., and Longo, D.L. Aging and Cancer: Issues of Basic and Clinical Science. Journal of the National Cancer Institute 89, 1489-1497, 1997.
Esteller, M. Epigenetics in Cancer. New England Journal of Medicine 358, 1148-1159, 2008.
Ever, L., Zhao, R., Eswarakumar, V.P., and Gaiano, N. Fibroblast Growth Factor Receptor 2 Plays an Essential Role in Telencephalic Progenitors. Developmental Neuroscience 30, 306-318, 2008.
Feinberg, A.P., Ohlsson, R., and Henikoff, S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21-33, 2006.
Feinberg, A.P., and Tycko, B. The history of cancer epigenetics. Nat Rev Cancer 4, 143-153, 2004.
Feinberg, A.P., and Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92, 1983.
Fernandez, P.C., Frank, S.R., Wang, L., Schroeder, M., Liu, S., Greene, J., Cocito, A., and Amati, B. Genomic targets of the human c-Myc protein. Genes & Development 17, 1115-1129, 2003.
Figueroa, M.E., Skrabanek, L., Li, Y., Jiemjit, A., Fandy, T.E., Paietta, E., Fernandez, H., Tallman, M.S., Greally, J.M., Carraway, H., et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114, 3448-3458, 2009.
Fraga, M.F., and Esteller, M. Epigenetics and aging: the targets and the marks. Trends in Genetics 23, 413-418, 2007.
Fuccillo, M., Joyner, A.L., and Fishell, G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7, 772-783, 2006.
Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Research 64, 7011-7021 2004.
Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. SOX2 Functions to Maintain Neural Progenitor Identity. Neuron 39, 749-765, 2003.
Gravendeel, L.A.M., Kouwenhoven, M.C.M., Gevaert, O., de Rooi, J.J., Stubbs, A.P., Duijm, J.E., Daemen, A., Bleeker, F.E., Bralten, L.B.C., Kloosterhof, N.K., et al. Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology. Cancer Research 69, 9065-9072, 2009.
Gutin, G., Fernandes, M., Palazzolo, L., Paek, H., Yu, K., Ornitz, D.M., McConnell, S.K., and Hébert, J.M. FGF signalling generates ventral telencephalic cells independently of SHH. Development 133, 2937-2946, 2006.
Hagino-Yamagishi, K., Saijoh, Y., Ikeda, M., Ichikawa, M., Minamikawa-Tachino, R., and Hamada, H. Predominant expression of Brn-2 in the postmitotic neurons of the developing mouse neocortex. Brain Research 752, 261-268, 1997.
He, X., Treacy, M.N., Simmons, D.M., Ingraham, H.A., Swanson, L.W., and Rosenfeld, M.G. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340, 35-42, 1989.
Hegi, M.E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., Kros, J.M., Hainfellner, J.A., Mason, W., Mariani, L., et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine 352, 997-1003, 2005.
Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences 100, 15178-15183, 2003.
Herman, J.G., and Baylin, S.B. Gene Silencing in Cancer in Association with Promoter Hypermethylation. New England Journal of Medicine 349, 2042-2054, 2003.
Herman, J.G., Umar, A., Polyak, K., Graff, J.R., Ahuja, N., Issa, J.-P.J., Markowitz, S., Willson, J.K.V., Hamilton, S.R., Kinzler, K.W., et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences 95, 6870-6875, 1998.
Heyn, H., and Esteller, M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13, 679-692, 2012.
Holliday, R., and Pugh, J. DNA modification mechanisms and gene activity during development. Science 187, 226-232, 1975.
Hood, L., and Flores, M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnology 29, 613-624, 2012.
Hoque, M.O., Feng, Q., Toure, P., Dem, A., Critchlow, C.W., Hawes, S.E., Wood, T., Jeronimo, C., Rosenbaum, E., Stern, J., et al. Detection of Aberrant Methylation of Four Genes in Plasma DNA for the Detection of Breast Cancer. Journal of Clinical Oncology 24, 4262-4269, 2006.
Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M., et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41, 178-186, 2009.
Itzkowitz, S., Brand, R., Jandorf, L., Durkee, K., Millholland, J., Rabeneck, L., Schroy, P.C., Sontag, S., Johnson, D., Markowitz, S., et al. A Simplified, Noninvasive Stool DNA Test for Colorectal Cancer Detection. Am J Gastroenterol 103, 2862-2870, 2008.
Jerónimo, C., Costa, I., Martins, M.C., Monteiro, P., Lisboa, S., Palmeira, C., Henrique, R., Teixeira, M.R., and Lopes, C. Detection of Gene Promoter Hypermethylation in Fine Needle Washings from Breast Lesions. Clinical Cancer Research 9, 3413-3417, 2003.
Jones, P.A., and Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428, 2002.
Kan, L., Israsena, N., Zhang, Z., Hu, M., Zhao, L.-R., Jalali, A., Sahni, V., and Kessler, J.A. Sox1 acts through multiple independent pathways to promote neurogenesis. Developmental Biology 269, 580-594, 2004.
Kanai, Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Science 101, 36-45, 2010.
Kim, M., Lee, J., and Sidransky, D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29, 181-206, 2010.
Klein, R., Conway, D., Parada, L.F., and Barbacid, M. (The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647-656, 1990a.
Klein, R., Martin-Zanca, D., Barbacid, M., and Parada, L.F. Expression of the tyrosine kinase receptor gene trkB is confined to the murine embryonic and adult nervous system. Development 109, 845-850, 1995b.
Klein R, Parada LF., Coulier Francois, and Barbacid, M.. trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8, 3701-3709, 1989.
Klein, R., Silos-Santiago, I., Smeyne, R.J., Lira, S.A., Brambilla, R., Bryant, S., Zhang, L., Snider, W.D., and Barbacid, M. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368, 249-251, 1994.
Klein, R., Smeyne, R.J., Wurst, W., Long, L.K., Auerbach, B.A., Joyner, A.L., and Barbacid, M. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75, 113-122, 1993.
Klink, M., Nowak, M., Kielbik, M., Bednarska, K., Blus, E., Szpakowski, M., Szyllo, K., and Sulowska, Z. The interaction of HspA1A with TLR2 and TLR4 in the response of neutrophils induced by ovarian cancer cells in vitro. Cell Stress and Chaperones 17, 661-674, 2012.
Kneip, C., Schmidt, B., Seegebarth, A., Weickmann, S., Fleischhacker, M., Liebenberg, V., Field, J.K., and Dietrich, D. SHOX2 DNA Methylation Is a Biomarker for the Diagnosis of Lung Cancer in Plasma. Journal of Thoracic Oncology 6, 1632-1638 1610.1097/JTO.1630b1013e318220ef318229a, 2011.
Ko, S.Y., Barengo, N., Ladanyi, A., Lee, J.-S., Marini, F., Lengyel, E., and Naora, H. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. The Journal of Clinical Investigation 122, 3603-3617, 2012.
Kuk, C., Gunawardana, C.G., Soosaipillai, A., Kobayashi, H., Li, L., Zheng, Y., and Diamandis, E.P. Nidogen-2: A new serum biomarker for ovarian cancer. Clinical Biochemistry 43, 355-361, 2010.
Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes & Development 11, 1048-1060, 1997.
La Thangue, N.B., and Kerr, D.J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 8, 587-596, 2011.
Lamballe, F., Klein, R., and Barbacid, M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967-979, 1991.
Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., Christopher, N., Zhang, W., et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391-403, 2006a.
Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K.-i., et al. Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells. Cell 125, 301-313, 2006b.
Levi-Montalcini, R. The Nerve Growth Factor: thirty-five years later. EMBO J 6, 1145-1154, 1987.
Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., Shi, Q., Cao, Y., Lathia, J., McLendon, R.E., et al. Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer cell 15, 501-513, 2009.
Li, Z., Van Calcar, S., Qu, C., Cavenee, W.K., Zhang, M.Q., and Ren, B. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proceedings of the National Academy of Sciences 100, 8164-8169, 2003.
Liggett, T.E., Melnikov, A., Yi, Q., Replogle, C., Hu, W., Rotmensch, J., Kamat, A., Sood, A.K., and Levenson, V. Distinctive DNA methylation patterns of cell-free plasma DNA in women with malignant ovarian tumors. Gynecologic Oncology 120, 113-120, 2011.
Maric, D., Fiorio Pla, A., Chang, Y.H., and Barker, J.L. Self-Renewing and Differentiating Properties of Cortical Neural Stem Cells Are Selectively Regulated by Basic Fibroblast Growth Factor (FGF) Signaling via Specific FGF Receptors. The Journal of Neuroscience 27, 1836-1852, 2007.
Marti, E., Bumcrot, D.A., Takada, R., and McMahon, A.P. Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322-325, 1995.
Mason, I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8, 583-596, 2007.
McKenna, E.S., Sansam, C.G., Cho, Y.-J., Greulich, H., Evans, J.A., Thom, C.S., Moreau, L.A., Biegel, J.A., Pomeroy, S.L., and Roberts, C.W.M. Loss of the Epigenetic Tumor Suppressor SNF5 Leads to Cancer without Genomic Instability. Molecular and Cellular Biology 28, 6223-6233, 2008.
Meimei, L., Peiling, L., Baoxin, L., Changmin, L., Rujin, Z., and Chunjie, H. Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells. Medical Oncology 28, 282-289, 2011.
Merlo, A., Herman, J.G., Mao, L., Lee, D.J., Gabrielson, E., Burger, P.C., Baylin, S.B., and Sidransky, D. 5[prime] CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1, 686-692, 1995.
Metz, C.E. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8, 283-298, 1978.
Mikeska, T., Bock, C., Do, H., and Dobrovic, A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Review of Molecular Diagnostics 12, 473-487, 2012.
Miyagi, S., Masui, S., Niwa, H., Saito, T., Shimazaki, T., Okano, H., Nishimoto, M., Muramatsu, M., Iwama, A., and Okuda, A. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Letters 582, 2811-2815, 2008.
Murat, A., Migliavacca, E., Gorlia, T., Lambiv, W.L., Shay, T., Hamou, M.-F., de Tribolet, N., Regli, L., Wick, W., Kouwenhoven, M.C.M., et al. Stem Cell–Related "Self-Renewal" Signature and High Epidermal Growth Factor Receptor Expression Associated With Resistance to Concomitant Chemoradiotherapy in Glioblastoma. Journal of Clinical Oncology 26, 3015-3024, 2008.
Nakai, S., Kawano, H., Yudate, T., Nishi, M., Kuno, J., Nagata, A., Jishage, K., Hamada, H., Fujii, H., and Kawamura, K. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes & Development 9, 3109-3121, 1995.
Noushmehr, H., Weisenberger, D.J., Diefes, K., Phillips, H.S., Pujara, K., Berman, B.P., Pan, F., Pelloski, C.E., Sulman, E.P., Bhat, K.P., et al. Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 17, 510-522, 2010.
Ordway, J.M., Budiman, M.A., Korshunova, Y., Maloney, R.K., Bedell, J.A., Citek, R.W., Bacher, B., Peterson, S., Rohlfing, T., Hall, J., et al. Identification of Novel High-Frequency DNA Methylation Changes in Breast Cancer. PLoS ONE 2, e1314, 2007.
Paek, H., Gutin, G., and Hébert, J.M. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development 136, 2457-2465, 2009.
Park, J.W., Kerbel, R.S., Kelloff, G.J., Barrett, J.C., Chabner, B.A., Parkinson, D.R., Peck, J., Ruddon, R.W., Sigman, C.C., and Slamon, D.J. Rationale for Biomarkers and Surrogate End Points in Mechanism-Driven Oncology Drug Development. Clinical Cancer Research 10, 3885-3896, 2004.
Parsons, D.W., Jones, S., Zhang, X., Lin, J.C.-H., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.-M., Gallia, G.L., et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 321, 1807-1812, 2008.
Pevny, L., and Rao, M.S. The stem-cell menagerie. Trends in Neurosciences 26, 351-359, 2003.
Phillips, H.S., Kharbanda, S., Chen, R., Forrest, W.F., Soriano, R.H., Wu, T.D., Misra, A., Nigro, J.M., Colman, H., Soroceanu, L., et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157-173, 2006.
Radpour, R., Barekati, Z., Kohler, C., Lv, Q., Bürki, N., Diesch, C., Bitzer, J., Zheng, H., Schmid, S., and Zhong, X.Y. Hypermethylation of Tumor Suppressor Genes Involved in Critical Regulatory Pathways for Developing a Blood-Based Test in Breast Cancer. PLoS ONE 6, e16080, 2011.
Radpour, R., Kohler, C., Haghighi, M.M., Fan, A.X.C., Holzgreve, W., and Zhong, X.Y. Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene 28, 2969-2978, 2009.
Rauch, T.A., Zhong, X., Wu, X., Wang, M., Kernstine, K.H., Wang, Z., Riggs, A.D., and Pfeifer, G.P. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences 105, 252-257, 2008.
Riggs, A.D. X inactivation, differentiation, and DNA methylation. Cytogenetic and Genome Research 14, 9-25, 1975.
Rodrigues, S., De Wever, O., Bruyneel, E., Rooney, R.J., and Gespach, C.. Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26, 5615-5625, 2007.
Roelink, H., Porter, J.A., Chiang, C., Tanabe, Y., Chang, D.T., Beachy, P.A., and Jessell, T.M. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445-455, 1995.
Sawyers, C.L. The cancer biomarker problem. Nature 452, 548-552, 2008.
Schmidt, B., Liebenberg, V., Dietrich, D., Schlegel, T., Kneip, C., Seegebarth, A., Flemming, N., Seemann, S., Distler, J., Lewin, J., et al. SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 10, 1-9, 2010.
Schneider, K., Dietrich, D., Fleischhacker, M., Leschber, G., Merk, J., Schäper, F., Stapert, H., Vossenaar, E., Weickmann, S., Liebenberg, V., et al. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors. BMC Cancer 11, 1-9, 2011.
Schonemann, M.D., Ryan, A.K., McEvilly, R.J., O'Connell, S.M., Arias, C.A., Kalla, K.A., Li, P., Sawchenko, P.E., and Rosenfeld, M.G. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes & Development 9, 3122-3135, 1995.
Sherwood, D.R., Butler, J.A., Kramer, J.M., and Sternberg, P.W. FOS-1 Promotes Basement-Membrane Removal during Anchor-Cell Invasion in C. elegans. Cell 121, 951-962, 2005.
Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. Identification of human brain tumour initiating cells. Nature 432, 396-401, 2004.
Sperger, J.M., Chen, X., Draper, J.S., Antosiewicz, J.E., Chon, C.H., Jones, S.B., Brooks, J.D., Andrews, P.W., Brown, P.O., and Thomson, J.A. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proceedings of the National Academy of Sciences 100, 13350-13355, 2003.
Strittmatter, S.M., Valenzuela, D., Kennedy, T.E., Neer, E.J., and Fishman, M.C. G0 is a major growth cone protein subject to regulation by GAP-43. Nature 344, 836-841, 1990.
Su, H.-Y., Lai, H.-C., Lin, Y.-W., Chou, Y.-C., Liu, C.-Y., and Yu, M.-H. An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. International Journal of Cancer 124, 387-393, 2009.
Sugitani, Y., Nakai, S., Minowa, O., Nishi, M., Jishage, K.-i., Kawano, H., Mori, K., Ogawa, M., and Noda, T. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes & Development 16, 1760-1765, 2002.
Tänzer, M., Balluff, B., Distler, J., Hale, K., Leodolter, A., Röcken, C., Molnar, B., Schmid, R., Lofton-Day, C., Schuster, T., et al. Performance of Epigenetic Markers SEPT9 and ALX4 in Plasma for Detection of Colorectal Precancerous Lesions. PLoS ONE 5, e9061, 2010.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861-872, 2007.
Takahashi, K., and Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663-676, 2006.
Tian, Q., Price, N.D., and Hood, L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. Journal of Internal Medicine 271, 111-121, 2012.
The Cancer Genome Atlas Research Netowrk Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068, 2008.
The Cancer Genome Atlas Research Netowrk Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615, 2011.
The Cancer Genome Atlas Research Netowrk Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70, 2012.
Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B., and Issa, J.-P.J. CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences 96, 8681-8686, 1999.
Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y., and Kondoh, H. Functional Analysis of Chicken Sox2 Enhancers Highlights an Array of Diverse Regulatory Elements that Are Conserved in Mammals. Developmental Cell 4, 509-519, 2003.
Ulazzi, L., Sabbioni, S., Miotto, E., Veronese, A., Angusti, A., Gafa, R., Manfredini, S., Farinati, F., Sasaki, T., Lanza, G., et al. Nidogen 1 and 2 gene promoters are aberrantly methylated in human gastrointestinal cancer. Molecular Cancer 6, 17, 2007.
Umemori, H., Linhoff, M.W., Ornitz, D.M., and Sanes, J.R. FGF22 and Its Close Relatives Are Presynaptic Organizing Molecules in the Mammalian Brain. Cell 118, 257-270, 2004.
Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110, 2010.
Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Südhof, T.C., and Wernig, M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041, 2010.
Vokes, S.A., Ji, H., McCuine, S., Tenzen, T., Giles, S., Zhong, S., Longabaugh, W.J.R., Davidson, E.H., Wong, W.H., and McMahon, A.P. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977-1989, 2007.
Wakana, K., Akiyama, Y., Aso, T., and Yuasa, Y. Involvement of GATA-4/-5 transcription factors in ovarian carcinogenesis. Cancer Letters 241, 281-288, 2006.
Werner, H.M.J., Mills, G.B., and Ram, P.T. Cancer Systems Biology: a peek into the future of patient care? Nat Rev Clin Oncol 11, 167-176, 2014.
Xu, Q., Guo, L., Moore, H., Waclaw, R.R., Campbell, K., and Anderson, S.A. Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitors with Distinct Cortical Interneuron Fates. Neuron 65, 328-340, 2010.
Xu, Q., Wonders, C.P., and Anderson, S.A. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development 132, 4987-4998, 2005.
Yurchenco, P.D., Amenta, P.S., and Patton, B.L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biology 22, 521-538, 2004.
Zappone, M.V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A.L., Lovell-Badge, R., Ottolenghi, S., et al. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367-2382, 2000.
Zhang, J., Benavente, C.A., McEvoy, J., Flores-Otero, J., Ding, L., Chen, X., Ulyanov, A., Wu, G., Wilson, M., Wang, J., et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329-334, 2012.
Zou, H., Allawi, H., Cao, X., Domanico, M., Harrington, J., Taylor, W.R., Yab, T., Ahlquist, D.A., and Lidgard, G. Quantification of Methylated Markers with a Multiplex Methylation-Specific Technology. Clinical Chemistry 58, 375-383, 2012.
Zweig, M.H., and Campbell, G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39, 561-577, 1993.