簡易檢索 / 詳目顯示

研究生: 賴柏宏
Lai, Bo-Hung
論文名稱: 多功能六硼化鑭複合奈米粒子之製備與近紅外光光熱治療應用
Fabrication and near infrared photothermal therapy application of multi-functional LaB6 composite nanoparticles
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 131
中文關鍵詞: 六硼化鑭近紅外光光熱治療螢光顯影上轉換
外文關鍵詞: LaB6, Near-infrared, Photothermal, Fluorescence imaging, Upconversion
相關次數: 點閱:139下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光熱治療是一種藉由光敏劑吸收光產生熱而進一步殺死腫瘤細胞之引人注目的治療技術。因為生物組織在近紅外光範圍無明顯的吸收,故通常使用近紅外光以避免對健康細胞造成非特異性加熱,並可穿透至較深的組織。此外,由於電漿奈米材料可令此技術具有空間選擇性,故常做為其光敏劑。在過去十年,以奈米材料為基礎的近紅外光光熱治療受到明顯增加的重視。光熱治療用材料主要包括金奈米材料、奈米碳管、及還原氧化石墨烯等。其中,金奈米材料最受關注。最近,六硼化鑭奈米粒子已被證實具有優異的近紅外光光熱轉換特性,相較於金奈米材料,由於價格相對較低、易於製備以及具有優異的近紅外光熱轉換性質,因此可作為一種新穎的近紅外光光熱治療材料。另一方面,在過去十年,碳摻雜二氧化矽奈米材料和近紅外光上轉換材料在生物螢光顯影上也頗受到重視。它們與近紅外光光熱轉換材料的結合可形成兼具近紅外光驅動光熱治療與螢光顯影的新穎性多功能複合奈米粒子。
    此外 感染性細菌引發的疾病持續造成人類死亡和殘疾,特別是從革蘭氏陽性菌所引起的感染仍然是造成人類發病和死亡的主要原因。萬古黴素是一種常用的聚肽醣抗生素,可透過與細菌終端的胜肽(D-alanyl-D-alanine)形成氫鍵,進而抑制細菌細胞壁生成,因此萬古黴素修飾的磁性奈米粒子已被開發作為有效選擇性抓取抗萬古黴素的格蘭氏陽性菌與陰性菌的親和性探針。如此,這些萬古黴素修飾的磁性奈米粒子與近紅外光光熱轉換材料的結合,可得到兼具細菌選擇性磁性分離與光熱消融雙功能的新穎多功能複合奈米粒子。
    本論文係有關近紅外光光感性複合奈米粒子之製備與應用,根據上述,以近紅外光光熱轉換材料為主體,結合具螢光顯影、磁性分離或選擇性抓取等功能的材料或分子,發展功能性複合奈米粒子,應用於癌細胞的光熱治療與螢光顯影以及細菌的選擇性磁性分離與光熱消融。本論文內容共包括三個主題: (1)製備表面被覆摻碳二氧化矽之六硼化鑭奈米粒子,並探討其在癌細胞螢光顯影與近紅外光光熱治療上的應用;(2)製備表面被覆二氧化矽之六硼化鑭與摻雜Yb,Er之NaYF4所共同構成的LaB6@SiO2/NaYF4:Yb,Er@SiO2複合奈米粒子,並探討其在癌細胞近紅外光螢光顯影與光熱治療上的應用;(3)製備表面被覆二氧化矽且修飾萬古黴素之六硼化鑭與氧化鐵所構成之複合奈米粒子,並探討其在細菌磁性分離與近紅外光光熱消融的應用。
    第一部分研究係製備表面被覆摻碳二氧化矽之六硼化鑭(LaB6@C-SiO2)奈米粒子,並探討其在癌細胞螢光顯影與近紅外光光熱治療上的應用。藉由改良式Stöber法以TEOS和APTES做為前驅物和碳源與進一步熱處理成功製備出六硼化鑭被覆碳摻雜二氧化矽奈米粒子。在6%的APTES/TEOS的莫耳比和350℃的熱處理溫度可得到最佳量子產率。六硼化鑭奈米粒子具備優異的光熱轉換效率,在近紅外光照射15個循環後仍保有優異的光熱轉換特性。在碳摻雜二氧化矽修飾後,所產生的LaB6@C-SiO2奈米粒子具有優異的近紅外光熱轉換性能和分別在紫外線照射或可見光照射下,可產生藍色與綠色螢光。以HeLa癌細胞做測試,結果顯示LaB6@C-SiO2奈米粒子沒有顯著的細胞毒性。然而,在近紅外光照射下,含LaB6@C-SiO2奈米粒子的細胞,細胞存活率顯著的降低至小於10%。進一步透過共軛焦顯微鏡,可知LaB6@C-SiO2奈米粒子經過細胞吞噬後存在於細胞質而非細胞核,此結果證實LaB6@C-SiO2奈米粒子的螢光顯影的功能。此外,含有六硼化鑭被覆二氧化矽奈米粒子之腫瘤在近紅外光照射後可急速升溫且保持在50℃左右。在活體光熱治療研究方面,注射表面被覆二氧化矽之六硼化鑭奈米粒子與照射近紅外光雷射之NOD-SCID小鼠的腫瘤相對體積明顯較其它條件為低。這些結果證實LaB6@C-SiO2奈米粒子確實可有效用於癌細胞的螢光顯影與近紅外光熱治療。
    第二部分研究係製備由表面被覆二氧化矽之六硼化鑭與掺雜Yb,Er之NaYF4所共同構成的LaB6@SiO2/NaYF4:Yb,Er@SiO2(LaB6@SiO2/UC@SiO2)複合奈米粒子,並探討其在癌細胞近紅外光螢光顯影與光熱治療上的應用。經由LaB6@SiO2和NaYF4:Yb,Er@SiO2的結合而成功製備出LaB6@SiO2/UC@SiO2複合奈米粒子。LaB6@SiO2/UC@SiO2複合奈米粒子具有優異的近紅外光熱轉換性能與在波長980nm雷射照射下產生綠色螢光。以HeLa癌細胞做測試,結果顯示即使LaB6@SiO2/UC@SiO2複合奈米粒子濃度高至400 μg/ml依然沒有顯著的細胞毒性。然而,含LaB6@SiO2/UC@SiO2複合奈米粒子濃度為250 μg/ml的細胞在近紅外光照射10分鐘下,細胞存活率降低至小於10%,但在不含LaB6@SiO2/UC@SiO2複合奈米粒子的細胞經過近紅外光照射十分鐘後並無顯著的細胞死亡。此外,透過共軛焦顯微鏡得知,LaB6@SiO2/UC@SiO2複合奈米粒子會被細胞吞噬至細胞質,且在近紅外光照射下發出螢光。這些結果證實LaB6@SiO2/UC@SiO2複合奈米粒子可利用近紅外光照射同時達到螢光顯影與癌細胞光熱治療的功能。
    第三部分研究係製備由表面被覆二氧化矽且修飾萬古黴素之六硼化鑭與氧化鐵(Van-LaB6@SiO2/Fe3O4)所構成之複合奈米粒子,並探討其在細菌磁性分離與近紅外光光熱消融上的應用。經由被覆二氧化矽殼層與羧基修飾的六硼化鑭奈米粒子將其表面藉由碳二醯胺活化,可以讓萬古黴素和Fe3O4奈米粒子鍵結於其表面,成功製備出Van-LaB6@SiO2/Fe3O4複合奈米粒子。從特性分析結果證實Van-LaB6@SiO2/Fe3O4複合奈米粒子接近超順磁,且同時保有LaB6核心優良的近紅外光吸收與光熱轉換性能以及萬古黴素捕捉 S. aureus和E. coli的能力。在近紅外光照射下,Van-LaB6@SiO2/Fe3O4複合奈米粒子確實可有效用於S. aureus和E. coli的捕獲和光熱消融。藉由磁場協助,可將捕獲細菌磁性聚集而進一步提升光熱消融的效率。

    Photothermal therapy is an attractive therapy technique using photosensitizers to generate heat from light absorption and then kill the cancer cells. To avoid the nonspecific heating of healthy cells, near-infrared (NIR) light is usually utilized because the tissues are transparent in this window and deep penetration could be achieved. Also, plasmonic nanomaterials are usually used as the photosensitizers because they make this technique possess spatial selectivity. In the past ten years, nanomaterials-based NIR photothermal therapy has received considerably increasing attention. The main materials developed for photothermal therapy include gold nanostructures, carbon nanotubes, and reduced graphene oxide. Among them, gold-based nanomaterials received most of attention. Recently, LaB6 nanoparticles have been demonstrated to be an excellent NIR photothermal conversion material and might be used as a novel nanomaterial for NIR photothermal therapy because of their relatively low price, easy-preparation, and excellent NIR photothermal conversion property as compared to gold-based nanomaterials. On the other hand, carbon-doped silica nanomaterial and NIR up-conversion nanoparticles also have received considerable attention in the bio-imaging in the past ten years. Their combination with NIR photothermal conversion materials may form the novel multifunctional nanocomposites for the NIR-triggered photothermal therapy and fluorescence imaging of cancer cells.
    In addition, infectious bacterial diseases continue to be a leading cause of death and disability. In particular, infections resulting from Gram-positive bacteria remain a leading cause of morbidity and mortality in human. Since vancomycin is a commonly used glycopeptide antibiotic which can inhibit the cell wall synthesis by forming hydrogen bond with the terminal D-alanyl-D-alanine (D-Ala-D-Ala), the vancomycin-modified magnetic nanoparticles have been developed as an effective affinity probe to trap vancomycin-resistant Gram-positive or negative bacteria selectively. Thus, their combination with NIR photothermal conversion materials could yield a novel multifunctional nanocomposite with both functions of selective magnetic separation and NIR photothermal ablation of bacteria.
    This dissertation concerns the fabrication and application of near infrared (NIR)-photoresponsible composite nanoparticles. According to the above, the functional composite nanoparticles combining the NIR photothermal conversion materials and the materials or molecules with the functions of fluorescence imaging, magnetic separation, or selective capture are developed for the photothermal therapy and fluorescence of cancer cells as well as the magnetic separation and photothermal ablation of bacteria. The contents include: (1) prepare the LaB6 nanopartilces with carbon-doped silica coating and study their application in the fluorescence imaging and NIR photothermal therapy of cancer cells; (2) prepare LaB6@SiO2/NaYF4:Yb,Er@SiO2 composite nanoparticles and study their application in the NIR fluorescence imaging and photothermal therapy of cancer cells; (3) prepare the vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles and study their application in the magnetic separation and NIR photothermal ablation of bacteria.
    The first part concerns the preparation of LaB6 nanopartilces with carbon-doped silica coating (LaB6@C-SiO2) and their applications in the fluorescence imaging and NIR photothermal therapy of cancer cells. LaB6@C-SiO2 nanoparticles have been fabricated successfully via the modified Stöber method and the followed heat treatment with TEOS and APTES as the precursor and carbon source, respectively. The optimal quantum yield was obtained at an APTES/TEOS molar ratio of 6% and an annealing temperature of 350oC. The LaB6 nanoparticles have excellent photothermal conversion efficiency. After irradiated near infrared laser 15 cycles, they still retain excellent photohermal conversion characteristics. After the carbon-doped silica coating, the resulting LaB6@C-SiO2 nanoparticles exhibited an excellent NIR photothermal conversion property and a bright blue emission under UV irradiation or a green emission under visible irradiation. By using a HeLa cancer cell line, it was shown that LaB6@C-SiO2 nanoparticles had no significant cytotoxicity. However, under NIR irradiation, the presence of LaB6@C-SiO2 nanoparticles could result in the remarkable decrease of cell viability to less than 10%. Furthermore, by the confocal microscope, LaB6@C-SiO2 nanoparticles were found to be cellular uptaken in cytoplasm rather than nucleus, which also confirmed their function of fluorescence imaging. Moreover, the heating curve of the tumor incubated with the LaB6@SiO2 nanoparticles under NIR laser irradiation increases steeply and is kept at around 50°C. The relative tumor volume after in vivo photothermal therapy of NOD-SCID mice treated with the LaB6@SiO2 nanoparticles followed by NIR laser irradiation decreases significantly compares to other controls. These results demonstrated that LaB6@C-SiO2 nanoparticles were indeed efficient for the fluorescence imaging and NIR photothermal therapy of cancer cells.
    The second part concerns the preparation of LaB6@SiO2/NaYF4:Yb,Er@SiO2 (LaB6@SiO2/UC@SiO2) composite nanoparticles and their applications in the NIR fluorescence imaging and and photothermal therapy of cencer cells. the LaB6@SiO2/UC@SiO2 composite nanoparticles have been fabricated successfully via the amino- functionalized LaB6@SiO2 and carboxylic-functionalized UC@SiO2 conjugated. The resulting LaB6@SiO2/UC@SiO2 composite nanoparticles exhibited an excellent NIR photothermal conversion property and a green emission under 980nm laser irradiation. By using a HeLa cancer cell line, it was shown that LaB6@SiO2/UC@SiO2 composite nanoparticles had no significant cytotoxicity even the concentration of LaB6@SiO2/UC@SiO2 composite nanoparticles was up to 400 μg/ml. However, under NIR irradiation for 10 min, the presence of LaB6@SiO2/UC@SiO2 composite nanoparticles at 250 μg/ml could decrease the cell viability to less than 10% but no significant cell death was observed under NIR irradiation for 10 min in the absence LaB6@SiO2/UC@SiO2 composite nanoparticles. Furthermore, by the confocal microscope, LaB6@SiO2/UC@SiO2 nanoparticles were found to be cellular uptaken in cytoplasm under NIR irradiation. These results demonstrated that LaB6@SiO2/UC@SiO2 nanoparticles were indeed efficient for the fluorescence imaging and photothermal therapy of cancer cells with NIR irradiation.
    The third part concerns the preparation of vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles and their applications in the magnetic separation and NIR photothermal ablation of bacteria. Van-LaB6@SiO2/Fe3O4 composite nanoparticles have been fabricated successfully by the successive binding of vancomycin and Fe3O4 nanoparticles via carbodiimide activation onto the surface of LaB6 nanoparticles with silica coating and carboxyl functionalization. The characteristic analysis results confirm that the Van-LaB6@SiO2/Fe3O4 composite nanoparticles were nearly superparamagnetic and they retained the excellent NIR absorption and photothermal conversion properties of LaB6 cores and the capability of vancomycin for targeting S. aureus and E. coli. Under NIR irradiation, they were demonstrated to be quite efficient for the capture and photothermal ablation of S. aureus and E. coli. Furthermore, by the assistance of Van-LaB6@SiO2/Fe3O4 composite nanoparticles, the photothermal ablation efficiency could be further enhanced via the magnetic assembling of captured bacteria.

    中文摘要 I Abstract IV 英文延伸摘要 VIII 致謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 符號 XXII 第一章 文獻回顧 1 1.1近紅外光光熱治療 1 1.1.1 熱治療 1 1.1.2 近紅外光光熱治療法在腫瘤治療方面的相關研究 2 1.1.3 近紅外光光熱治療法在治療致病菌感染方面的相關研究 10 1.2電漿奈米材料之吸光發熱原理與效率計算 14 1.2.1 表面電漿共振效應 14 1.2.2 近紅外光光熱轉換原理 15 1.2.3光熱轉換效率計算 16 1.3六硼化鑭 19 1.3.1 六硼化鑭晶體結構 19 1.3.2 六硼化鑭的製備 21 1.3.3 六硼化鑭的特性與應用 24 1.4 奈米材料應用於生物顯影 29 1.4.1 螢光顯影技術簡介 29 1.4.2 螢光二氧化矽 31 1.4.3 上轉換奈米材料 33 1.5萬古黴素 36 1.6研究架構 37 第二章 表面被覆摻碳二氧化矽之六硼化鑭奈米粒子的製備及其在癌 細胞螢光顯影與近紅外光光熱治療上的應用 39 2.1研究動機 39 2.2 實驗藥品、器材與方法 41 2.2.1 實驗藥品 41 2.2.2 實驗細胞株 42 2.2.3 儀器設備 43 2.2.4 實驗方法 44 2.3 結果與討論 54 2.3.1 粒徑、結構與表面特性 54 2.3.2 近紅外光吸收、光熱轉換與螢光特性 57 2.3.3 細胞毒性與光熱治療測試 63 2.3.4 癌細胞螢光顯影測試 67 2.3.5 活體腫瘤治療 69 2.4結論 74 第三章 LaB6@SiO2/ NaYF4:Yb,Er @SiO2複合奈米粒子的製備及其 在癌細胞近紅外光螢光顯影與光熱治療上的應用 75 3.1研究動機 75 3.2 實驗藥品、器材與方法 77 3.2.1 實驗藥品 77 3.2.2 實驗細胞株 79 3.2.3 儀器設備 79 3.2.4 實驗方法 81 3.3結果與討論 85 3.3.1 粒徑、結構與表面特性 85 3.3.2 近紅外光吸收、光熱轉換與螢光特性 88 3.3.3 細胞毒性與光熱治療測試 91 3.3.4 癌細胞顯影測試 93 3.4 結論 95 第四章 表面被覆二氧化矽且修飾萬古黴素之六硼化鑭與氧化鐵之複 合奈米粒子在細菌近紅外光光熱消融上的應用 96 4.1研究動機 96 4.2 實驗藥品、器材與方法 98 4.2.1 實驗藥品 98 4.2.2 實驗細菌 99 4.2.3 儀器設備 99 4.2.4 實驗方法 100 4.3結果與討論 104 4.3.1 大小,結構,吸收光譜和結合量 104 4.3.2 磁學性質 109 4.3.3 近紅外光熱轉換 110 4.3.4 Van-LaB6@SiO2/Fe3O4複合奈米粒子捕捉細菌 111 4.3.5 近紅外光光熱消融治療細菌 112 4.4結論 114 第五章 總結論 115 參考文獻 117

    1. S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol., Biol, Phys., 10, 787-800 (1984).
    2. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, J. García Solé, Nanoparticles for photothermal therapies, Nanoscale, 6, 9494-9530 (2014).
    3. A. Chicheł, J. Skowronek, M. Kubaszewska, M. Kanikowski, Hyperthermia-description of a method and a review of clinical applications, Rep. Pract. Oncol. Radiother., 12, 267-275 (2007).
    4. C.J. Simon, D.E. Dupuy, W.W. Mayo-Smith, Microwave ablation: principles and applications, RadioGraphics, 25, S69-S83 (2005).
    5. T.J. Dubinsky, C. Cuevas, M.K. Dighe, O. Kolokythas, J.H. Hwang, High-intensity focused ultrasound: current potential and oncologic applications, AJR Am J Roentgenol., 190, 191-199 (2008).
    6. R.L. Manthe, S.P. Foy, N. Krishnamurthy, B. Sharma, V. Labhasetwar, Tumor ablation and nanotechnology, Mol. Pharmaceut., 7, 1880-1898 (2010).
    7. Y. Bayazitoglu, S. Kheradmand, T.K. Tullius, An overview of nanoparticle assisted laser therapy, Int. J. Heat. Mass Tran., 67, 469-486 (2013).
    8. V. Ntziachristos, J. Ripoll, L.V. Wang, R. Weissleder, Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol., 23, 313-320 (2005).
    9. R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316-317 (2001).
    10. A.L. Honar, K.A. Kang, Effect of the source and detector configuration on the detectability of breast cancer, Comp. Biochem. Physiol. A Physiol., 132, 9-15 (2002).
    11. J.M. Murkin, M. Arango, Near-infrared spectroscopy as an index of brain and tissue oxygenation, Br. J. Anaesth., 103, i3-13 (2009).
    12. D.V. Volodkin, A.G. Skirtach, H. Mohwald, Near-IR remote release from assemblies of liposomes and nanoparticles, Angew. Chem. Int. Ed. Engl., 48, 1807-1809 (2009).
    13. V.P. Torchilin, Passive and active drug targeting: drug delivery to tumors as an example, Handb Exp Pharmacol., 197, 3-53 (2010)
    14. H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen, F. Tang, Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light, Adv. Mater., 24, 755-761 (2012).
    15. H. K. Moon, S. H. Lee, H.C. Choi, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes, ACS Nano, 3, 3707-3713 (2009).
    16. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, RE. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549-13554 (2003).
    17. W.I. Choi, J. Y. Kim, C. Kang, C.C. Byeon, Y.H. Kim, G. Tae, Tumor regression In vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers, ACS Nano, 5, 1995-2003 (2011).
    18. Z. Wang, Z. Chen, Z. Liu, P. Shi, K. Dong, E. Ju, J. Ren, X. Qu, A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy, Biomaterials, 35, 9678-9688 (2014).
    19. H. Ke, X. Yue, J. Wang, S. Xing, Q. Zhang, Z. Dai, J. Tian, S. Wang, Y. Jin, Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer, Small, 20, 1220-1227 (2014).
    20. X. Ye, H. Shi, X. He, K. Wang, D. Li, P. Qiu, Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy, J. Mater. Chem. B, 2, 3667-3673 (2014).
    21. W. Dong , Y. Li , D. Niu , Z. Ma , J. Gu , Y.Chen , W. Zhao ,X. Liu , C. Liu , J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy, Adv. Mater., 23, 5392-5397 (2011).
    22. S.M. Lee, H. Park, J.W. Choi, Y. Nyun Park, C.O. Yun, K.H. Yoo, Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells, Angew. Chem. Int. Ed. Engl., 50, 7581-7586 (2011).
    23. W. Lu, C. Xiong, G. Zhang, Q. Huang, R. Zhang, J.Z. Zhang, C. Li, Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres, Clin. Cancer Res., 15, 876-886 (2009).
    24. X. Liu, N. Huang, H. Li, H. Wang, Q. Jin, J. Ji, Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal Cancer therapy, ACS Appl. Mater. Interfaces, 6, 5657-5668 (2014).
    25. R. Chen, X. Wang, X. Yao, X. Zheng, J. Wang, X. Jiang, Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres, Biomaterials, 34, 8314-8322 (2013).
    26. R. Vankayala, C.C. Lin, P. Kalluru, C.S. Chiang, K.C. Hwang, Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light, Biomaterials, 35, 5527-5538 (2014).
    27. D. Chen, C. Wang, F. Jiang, Z. Liu, C. Shu, L.J. Wan, In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system, J. Mater. Chem. B, 2, 4726-4732 (2014).
    28. S.H. Yun, S.K. Hahn, Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer, ACS Nano, 8, 262-268 (2014).
    29. J. Chen, H. Liu, C. Zhao, G. Qin, G. Xi, T. Li, X. Wang, T. Chen, One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery, Biomaterials, 35, 4986-4995 (2014).
    30. W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yoong, J, Li, Z. Gu, Y. Zhao, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano, 8, 6922-6933 (2014).
    31. T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, Z. Liu, Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer, Adv. Mater., 26, 3433-3440 (2014).
    32. Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, H. Xing, Q. Ren, W. Fan, K. Zhao, Y. Hua, J. Shi, A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy, J. Am. Chem. Soc., 135, 13041-13048 (2013).
    33. G. Song , Q. Wang , Y. Wang , G. Lv , C. Li , R. Zou , Z. Chen , Z. Qin , K. Huo , R. Hu , J. Hu, A low-toxic multifunctional nanoplatform based on Cu9S5 @mSiO2 core-shell nanocomposites: combining photothermal and chemotherapies with infrared thermal imaging for cancer treatment, Adv. Funct. Mater., 23, 4281-4292 (2013).
    34. J. Liu, J. Han, Z. Kang, R. Golamaully, N. Xu, H. Li, X. Han, In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe, Nanoscale, 6, 5770-5776 (2014).
    35. J. Bai, Y. Liu, X. Jiang, Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy, Biomaterials, 35, 5805-5813 (2014).
    36. L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, W. Bu, B. Sun, Z. Liu, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy, Adv. Mater., 26, 1886-1893 (2014).
    37. M. Lin, C. Guo, J. Li, D. Zhou, K. Liu, X. Zhang, T. Xu, H. Zhang, L. Wang, B. Yang, Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%, ACS Appl. Mater. Interfaces, 6, 5860-5868 (2014).
    38. Q. Tian, Q. Wang, K.X. Yao, B. Teng, J. Zhang, S. Yang, Y. Han, Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy, Small, 10, 1063-1068 (2014).
    39. H.A. Hoffman, L. Chakrabarti, M.F. Dumont, A.D. Sandlerabcd, R. Fernandes, Prussian blue nanoparticles for laser-induced photothermal therapy of tumors, RSC Adv., 56, 29729-29734 (2014).
    40. L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer, Biomaterials, 34, 5814-5821 (2013).
    41. C. Yue, P. Liu , M. Zheng, P. Zhao, Y. Wang, Y. Maa, L. Cai, IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy, Biomaterials, 34, 6853-6861 (2013).
    42. S. Shen, J. Ren, X. Zhu, Z. Pang, X. Lu, C. Deng, R. Zhang, X. Jiang, Monodisperse magnetites anchored onto carbon nanotubes: a platform for cell imaging, magnetic manipulation and enhanced photothermal treatment of tumors, J. Mater. Chem. B, 1, 1939-1946 (2013).
    43. T.N. Lambert, N.L. Andrews, H. Gerung, T.J. Boyle, J.M. Oliver, B.S. Wilson, S.M. Han, Water-soluble germanium(0) nanocrystals: cell recognition and near-infrared photothermal conversion properties, Small, 3, 691-699 (2007).
    44. C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infrared absorption, Nanoscale, 5, 6469-6478 (2013).
    45. C.J. Chen, D.H. Chen, Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles, Nanoscale Res. Lett., 8, 57 (2013).
    46. L.S. Lin, Z.X. Cong, J.B. Cao, K.M. Ke, Q.L. Peng, J. Gao, H.H. Yang, G. Liu, X. Chen, Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy, ACS Nano, 8, 3876-3883 (2014).
    47. W.C. Huang, P.J. Tsai, Y.C. Chen, Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria, Small, 5, 51-56 (2009).
    48. S.A. Khan, A.K. Singh, D. Senapati, Z. Fan, P.C. Ray, Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104, J. Mater. Chem., 21, 17705-17709 (2011).
    49. C. Wang, J. Irudayaraj, Multifunctional magnetic–optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens, Small, 6, 283-289 (2010).
    50. M. Ramasamy, S.S. Lee, D.K. Yi, K. Kim, Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria, J. Mater. Chem. B, 2, 981-988 (2014).
    51. B. Hu, L.P. Zhang, X.W. Chen, J.H. Wang, Gold nanorod-covered kanamycin-loaded hollow SiO2 (HSKAurod) nanocapsules for drug delivery and photothermal therapy on bacteria, Nanoscale, 5, 246-252 (2013).
    52. Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, P. C. Ray, Popcorn-shaped magnetic core - plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria, Chem. Eur. J., 19, 2839-2847 (2013).
    53. X. Dai, Z. Fan, Y. Lu, P.C. Ray, Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications, ACS Appl. Mater. Interfaces, 5, 11348-11354 (2013).
    54. M.C. Wu, A. R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria, ACS Nano, 7, 1281-1290 (2013).
    55. D. Lin, T. Qin, Y. Wang, X. Sun, L. Chen, Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect, ACS Appl. Mater. Interfaces, 6, 1320-1329 (2014).
    56. T. Tian, X. Shi, L. Cheng, Y. Luo, Z. Dong, H. Gong, L. Xu, Z. Zhong, R. Peng, Z. Liu, Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent, ACS Appl. Mater. Interfaces, 6, 8542-8548 (2014).
    57. X. Yang, Z. Li, E. Ju, J. Ren, X. Qu, Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria, Chem. Eur. J., 20, 394-398 (2014).
    58. S. LINK, M. A. El-sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 1, 409-453 (2000).
    59. 吳杰儒, 奈米微粒雷射熱治療效率提升技術之研發, 國立成功大學機械工程研究所碩士論文(2006)。
    60. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, J. Wang, Understanding the photothermal conversion efficiency of gold nanocrystals, Small, 6, 2272-2280 (2010).
    61. S. Regli, J.A. Kelly, A.M. Shukaliak, J.G.C. Veinot, Phothermal response of photoluminescent silicon nanocrystals, J. Phys. Chem. Lett., 3, 1793-1797 (2012).
    62. G. Fu, W. Liu, S. Feng, X. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy, Chem. Commun., 48, 11567-11569 (2012).
    63. J. Etourneau, J.P. Mercurio, P. Hagenmuller, Boron and Refractory Borides, Springer, Berlin Heidelberg, pp. 115-138 (1997).
    64. H. Werheit, T. Au, R. Schmechel, Interband transitions, IR-active phonons, and plasma vibrations of some metal hexaborides, J. Solid State Chem., 154, 87-92 (2000).
    65. D. Mandrus, B.C. Sales, R. Jin, Localized vibrational mode analysis of the resistivity and specific heat of LaB6, Phys. Rev. B, 64, 012302 (2001).
    66. F.M. Hossain, D.P. Riley, G.E. Murch, Ab initio calculations of the electronic structure and bonding characteristics of LaB6, Phys. Rev. B, 72, 235101 (2005).
    67. T. Tanaka, T. Akahane, E. Bannai, S. Kawai, N. Tsuda, Y. Ishizawa, Role of polar optical phonon scattering in electrical resistivities of LaB6 and ReO3 (metallic conduction), J. Phys. C, 9, 1235 (1976).
    68. J.M. Lafferty, Boride Cathodes. J. Appl. Phys., 22, 299-309 (1951).
    69. J.R. Rea, E. Kostiner, The formation of calcium and certain rare-earth hexaboride single crystals, J. Crystal Growth, 11, 110-116 (1971).
    70. B. Post, D. Moskowitz, F.W. Glaser, Borides of rare earth metals, J. Am. Chem. Soc., 78, 1800-1802 (1956).
    71. P. Peshev, A thermodynamic analysis of lanthanum hexaboride crystal preparation from aluminum flux with the use of compound precursors, J. Solid State Chem., 133, 237-242 (1997).
    72. H. Zhang, Q. Zhang, J. Tang, L.C. Qin, Single-crystalline LaB6 nanwire. J. Am. Chem. Soc., 127, 2862-2863 (2005).
    73. H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, L.C. Qin, Field emission of electrons from single LaB6 nanowires, Adv. Mater., 18, 87-91 (2006).
    74. M. Kamaludeen, I. Selvaraj, A.visuvasama, R. Jayavel, LaB6 crystals from fused salt electrolysis, J. Mater. Chem., 8, 2205-2207 (1998).
    75. M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang, Y. Qian, A low-temperature route for the synthesis of nanocrystalline LaB6, J. Solid State Chem., 181, 294-297 (2008).
    76. S. Schelm, G.B. Smith, Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing, Appl. Phys. Lett., 82, 4346-4348 (2003).
    77. S. Schelm, G.B. Smith, Tuning the surface-plasmon resonance in nanoparticles for glazing applications, J. Appl. Phys. 97, 124314 (2005).
    78. H. Takeda, H. Kuno, K. Adachi, Solar control dispersions and coatings with rare-earth hexaboride nanoparticles, J. Am. Ceram. Soc., 91, 2897-2902 (2008).
    79. C.J. Chen, D.H. Chen, Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material, Chem. Eng. J., 180, 337-342 (2012).
    80. 陳成家, 淺談濕式奈米級粉體研磨/分散技術, 工業材料雜誌, 237, 83-90 (2006).
    81. 賴柏宏,陳成家,陳東煌,濕式奈米研磨分散技術與應用,化工, 63, 92-103 (2014).
    82. G.G. Firz, K.S. Wood, D.V. Vechten, A.L. Gyulamiryan, A.S. Kuzanyan, N.J. Giordano, T.M. Jacobs, H.D. Wu, J.S. Horwitz, A.M. Gulian, Thermoelectric single-photon detectors for x-ray/UV radiation, Proc. SPIE, 4140, 459 (2000).
    83. K. Adachi, M. Miratsu, Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters, J. Mater. Res., 25, 510-521 (2010).
    84. S. Kimura, T. Nanba, M. Tomikawa, S. Kunii, T. Kasuya, Electronic structure of rare-earth hexaborides, Phys. Rev. B, 46, 196-204 (1992).
    85. S. Kimura, T. Nanba, S. Kunii, T. Suzuki, T. Kasuya, Anomalous infrared absorption in rare-earth hexaborides, Solid State Commun., 75, 717-20 (1990).
    86. H. Ahmed, A.N. Broers, Lanthanum hexaboride electron emitter, J. Appl. Phys. 43, 2185 (1972).
    87. M. Gesley, L.W. Swanson, A determination of the low work function planes of LaB6, Surf. Sci., 146, 583 (1984).
    88. V. Craciun, D. Craciun, Pulsed laser deposition of crystalline LaB6 thin films, Appl. Surf. Sci., 247, 384-389 (2005).
    89. H. Zhang, J. Tang, L. Zhang, B. An, LC. Qin, Atomic force microscopy measurement of the Young’s modulus and hardness of single LaB6 nanowires, Appl. Phys. Lett., 92, 173121 (2008).
    90. D.H. Templetion, C.H. Dauben, Lattice parameters of some rare earth compounds and a set of crystal radii, J. Am. Chem. Soc. 76, 5237-5239 (1954).
    91. D. Deng, Y. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, Y. Gu, High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging, Chem. Mater., 24, 3029-3037 (2012).
    92. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 4, 435-446 (2005).
    93. S.H. Hu , Y.W. Chen , W.T. g Hung , I.W. Chen , S.Y. Chen, Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ, Adv. Mater., 24, 1748-1754 (2012).
    94. N. Lewinski, V. Colvin, R. Drezek, Cytoxicity of nanoparticles, Small, 4, 26-49 (2008).
    95. L.D. Chen, J. Liu, X.F. Yu, M. He, X.F. Pei, Z.Y. Tang, Q.Q. Wang, D.W. Pang, Y. Li, The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis, Biomaterials, 29, 4170-4176 (2008).
    96. A.M. Smith, H.W. Duan, A.M. Mohs, S.M. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Delivery Rev., 60, 1226-1240 (2008).
    97. D.W. Deng, J.F. Xia, J. Gao, L.Z. Qu, J.M. Tian, Z.Y. Qian, Y.Q. Gu, Z.Z. Gu, Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule, J. Colloid Interface Sci., 367, 234-240 (2012).
    98. Z.Y. Zhang, Y.D. Xu, Y.Y. Ma, L.L. Qiu, Y. Wang, J.L. Kong, H.M. Xiong, Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro, Angew. Chem. Int. Ed., 52, 4127-4131 (2013).
    99. E.J. Goh, K.S. Kim, Y.R. Kim, H.S. Jung, S. Beack, W.H. Kong, G. Scarcelli, S.H. Yun, S.K. Hahn, Bioimaging of hyaluronic acid derivatives using nanosized carbon dots, Biomacromolecules, 13, 2554-2561 (2012).
    100. L. Vaccaro, A. Morana, V. Radzing, M. Cannas, Bright visivle luminescence in silica nanoparticles, J. Phys. Chem. C, 115, 19476-19481 (2011).
    101. M. Al-Rawi, S. Diabate´, C. Weiss, Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells, Arch. Toxicol., 85, 813-826 (2011).
    102. M.A. Malvindi, V. Brunetti, G. Vecchio, A. Galeone, R. Cingolanib, P.P. Pompa, SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing, Nanoscale, 4, 486-495 (2012).
    103. L. Wang, W. Tan, Multicolor FRET silica nanoparticles by single wavelength excitation, Nano Lett., 6, 84-8 (2006).
    104. J.H. Lee, Y.W. Jun, S.I. Yeon, J.S. Shin, J.W. Cheon, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma, Angew. Chem. Int. Ed., 45, 8160-8162 (2006).
    105. D. Haranath, S. Sahai, S. Singh, A.G. Joshi, M. Husainand, V. Shanker, Highly efficient, tunable and bright photoluminescence from hydrophobic silica gel nanoparticles, J. Mater. Chem., 21, 9471-9474 (2011).
    106. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105, 8861-8871 (2001).
    107. M. Darbandi, R. Thomann, T. Nann, Single quantum dots in silica spheres by microemulsion synthesis, Chem. Mater., 17, 5720-5725 (2005).
    108. W.H. Green, K.P. Le, J. Grey, T.T. Au, M.J. Sailor, White phosphors from a silicate-carboxylate sol-gel precursor that lack metal activator ions, Science, 276, 1826-1828 (1997).
    109. D. Kong, C. Zhang, Z. Xu, G. Li, Z. Hou, L. Lin, Tunable photoluminescence in monodisperse silica spheres, J. Colloid Interface Sci., 352, 278-284 (2010).
    110. J. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7, 626-634 (2003).
    111. M. Oheim, D.J. Michael, M. Geisbauer, D. Madsenm R.H. Chow, Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug. Delivery Rev., 58, 788-808 (2006).
    112. M. Haase, H. Schäfer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011).
    113. F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976-989 (2009)
    114. F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc., 130, 5642 (2008).
    115. B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, H. Song, Multifunctional NaYF4:Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy, J. Mater. Chem., 21, 6193-6200 (2011).
    116. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.T. Lee, Z. Liu, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy, Angew. Chem. In. Ed., 50, 7385-7390 (2011).
    117. X. Li, Z. Hou, P. Ma, X. Zhang, C. Li, Z. Cheng, Y.Dai, J. Lian, J. Lin, Multifunctional NaYF4:Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging, RSC Adv., 3, 8517-8526 (2013).
    118. Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles, Adv. Mater., 20, 4765-4769 (2008).
    119. Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, J. Lin, Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core-shell hybrid microspheres, ACS Nano, 6, 3327-3338 (2012).
    120. H.T. Wong, M.K. Tsang, C.F. Chan, K.L. Wong, B. Fei, J. Hao, In vitro cell imaging using multifunctional small sized KGdF4:Yb3+,Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process, Nanoscale, 5, 3465-3473 (2013).
    121. L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.T. Lee, Z. Liu, Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy, Biomaterials, 33, 2215-2222 (2012).
    122. J. Pichaandi, J.C. Boyer, K.R. Delaney, F.C.J.NM. van Veggel, Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging, J. Phys. Chem. C, 115, 19054-19064 (2011).
    123. L. Cheng, C. Wang, Z. Liu, Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy, Nanoscale, 5, 23-37 (2013).
    124. Q. Liu, W. Feng, F. Li, Water-soluble lanthanide upconvesion nanophosphors: synthesis and bioimaging application in vivo, Coord. Chem. Rev., 273-274, 100-110 (2014).
    125. J. Shen, L. Zhao, G. Han, Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy, Adv. Drug Delivery Rev., 65, 744-755 (2013).
    126. J. Liu, W. Bu, L. Pan, J. Shi, NIR-triggered anticancer drug delivery by upconverting nanoparticles with intergrated azobenzene-modified mesoporous silica, Angew. Chem. Int. Ed., 52, 4375-4379 (2013).
    127. C. Wang, H. Tao, L. Cheng, Z. Liu, Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles, Biomaterials, 32, 6145-6154 (2011).
    128. Y. Wang, H. Wang, D. Liu, S. Song, X. Wang, H. Zhang, Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy, Biomaterials, 34, 7715-7724 (2013).
    129. U.N. Sundram, J.H. Griffin, Novel vancomycin dimers with activity against vancomycin-resistant Enterococci, J. Am. Chem. Soc., 118, 13107-13108. (1996)
    130. H. Gu, P.L. Ho, K.W.T. Tsang, L. Wang, B. Xu, Using biofunctional magnetic nanoparticles to capture vancomycin-resistant Enterococci and other Gram-positive bacteria at ultralow concentration, J. Am. Chem. Soc., 125, 15702-15703 (2003).
    131. H. Gu, P.L. Ho, E. Tong, L. Wang, B. Xu, Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Lett., 3, 1261-1263 (2003).
    132. A.J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M.G. Bergeron, B. Simard, Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria, ACS Nano, 2, 1777-1788 (2008)
    133. H.J. Chung, T. Reiner, G. Budin, C. Min, M. Liong, D. Issadore, H. Lee, R. Weissleder, Ubiquitous detection of Gram-positive bacteria with bioorthogonal magnetofluorescent manoparticles, ACS Nano, 5, 8834-8841 (2011).
    134. Y.S. Lin, P.J. Tsai, M.F. Weng, Y.C. Chen, Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria, Anal. Chem., 77, 1753-1760 (2005).
    135. H. Gu, P.L. Ho, K.W.T. Tsang, C.W. Yu, B. Xu, Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration, Chem. Commun., 15, 1966-1967 (2003).
    136. J. Gao, L. Li, P.L. Ho, G.C. Mak, H. Gu, B. Xu, Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood, Adv. Mater., 18, 3145-3148 (2006).
    137. 賴柏宏, 六硼化鑭複合奈米粒子的製備及其在生醫上的應用, 國立成功大學化學工程學系碩士論文 (2009).
    138. G. Jones II, W.R. Jackson, C.Y. Choi, W.R. Bergmark, Solvent effects on emission yield and lifetime for coumarin laser dyes. requirements for a rotatory decay mechanism, J. Phys. Chem., 89, 294-300 (1985).
    139. A.M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure Appl. Chem., 83, 22132218 (2011).
    140. Useful numbers for cell culture, website: (http://www.invitrogen.com/site/us/en/home/References/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html#prot1).
    141. Arrange information, website: (http://smallcollation.blogspot.tw/2013/01/cell-count.html#gsc.tab=0)
    142. T. Miyamoto, W. Min, H.S. Lillehoj, Lymphocyte proliferation response during Eimeria tenella infection assessed by a new, reliable, nonradioactive colorimetric assay, Avian Dis., 46, 10-16 (2002).
    143. 張文吉, 兼具近紅外光上轉換螢光顯影與光熱治療功能之NaYF4:Yb, Er與還原氧化石墨烯奈米複合材料的製備, 國立成功大學化學工程學系碩士論文 (2013).
    144. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, R. E. I. Schropp, Towards upconversion for amorphous silicon solar cells, Sol. Energy Mater. Sol. Cells., 94 , 1919-1922 (2010).
    145. B. H. Lai, C. C. Yeh, D. H. Chen, Surface modification of iron oxide nanoparticles with polyarginine as a highly positively charged magnetic nano-adsorbent for fast and effective recovery of acid proteins, Process Biochem., 47, 799-805 (2012).

    下載圖示 校內:2019-12-08公開
    校外:2019-12-08公開
    QR CODE