簡易檢索 / 詳目顯示

研究生: 林佳儀
Lin, Chia-Yi
論文名稱: 正型水性顯影聚苯噁唑/黏土奈米感光 複合材料之研究
Photosensitive poly(benzoxazole)/organoclay nanocomposites
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 107
中文關鍵詞: 奈米複合材黏土感光性高分子正型聚苯噁唑
外文關鍵詞: PBO, clay, nanocomposite, photosensitive
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以添加有機黏土於聚苯噁唑(polybenzoxazole,PBO)的前驅物-聚羥醯胺(polyhydroxyamide,PHA)中形成PHA/clay奈米複合材料,以降低聚苯噁唑薄膜之熱膨脹係數(CTE),並將其製備成正型鹼性水溶液顯影感光性PHA/clay之光阻配方,以研究其微影成像之特性。首先經由有機胺鹽和鈉蒙脫土(Na+-mentmorillonite)進行離子交換反應,製成膨潤化有機黏土(organoclay)。同時利用4,4-oxybis(benzoic acid)與thionyl chloride行氯化反應後之產物4,4’-oxydibenzoyl chloride,再與BisAPAF單體進行縮合聚合反應,合成出PHA樹脂,其固有黏度(inherent viscosity) 為0.3dL/g。將PHA與有機黏土製備出PHA/clay薄膜,經350℃環化後形成PBO/clay薄膜。經由X-ray 繞射分析顯示,DOA-Clay添加至5wt %時,呈脫層型分散,當添加量至7wt %時,黏土開始出現聚集或插層分散。TEM 分析也顯示添加3wt %及5wt % 黏土時,呈奈米分散,但添加7wt %黏土時,開始呈現聚集的情形。熱機械分析(TMA)指出,PBO/clay奈米複合材料的熱膨脹係數隨黏土添加量的增加而降低,添加5wt % 黏土時,薄膜之熱膨脹係數可以降低33%,此外,添加有機黏土,可增進PBO薄膜之熱性質(Tg、熱裂解溫度、恆溫耐熱性)。由PBO /clay薄膜試片的機械性質分析得知,有機黏土可以增加PBO的彈性模數,添加至5wt % 黏土時彈性模數增加了42%,顯示有機黏土有很好的補強效果。由吸水性實驗可看出添加黏土可降低PBO的吸水率,添加5wt % 黏土時吸水率更降低了62%。將PHA/clay和2,3,4-tris(1-oxo-2-diazonaphthoquinone-5-sulfonyloxy)–benzophenone
    (PIC-3) 感光劑配製成感光性樹脂配方, 經由適當控制微影成像(microlithography)參數,其解析度皆可達到5μm左右。此外,光敏感度(sensitivity)及對比值(contrast)並不會因添加有機黏土而受到影響。

      A project was carried out aimed at reducing the coefficient of thermal expansion (CTE) of photositive polybenzoxazole formulations (photoresists) through the incorporation of an organoclay. The organoclay was formed by a cation exchange reaction between a Na+-montmorillonite clay and an ammonium salt of dodecylamine (DOA). The polybenzoxazole (PBO) precursor polyhydroxyamide (PHA) was made by polycondensation reaction between 2,2-bis(3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) and 4,4-oxydibenzoyl chloride (ODC) with an inherent viscosity of 0.3dL/g.The PHA/clay was subsequently thermal cured to PBO/clay film. Both x-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that when containing 5wt % organoclay, the clay was dispersed in PBO matrix in a nanosacle. The CTE of PBO/clay film which contained 5wt % organoclay was decreased 33% compared to the pure PBO film. Besides, the PHA/clay nanocomposite films displayrd higher thermal stability, elastic modulus and water resistance than similar PBO films that do not contain clay. The photosensitive resin/clay formulations were prepared from PHA/ 5wt % organoclay and DNQ (PIC-3) photosensitive compound . The photosensitive PHA/clay nanocomposite showed a line/space pattern with a resolution of 5 µm was . Because the organoclay were well dispersed in the photosensitive PHA/clay nanocomposites, the sensitivity, contrast and photolithographic performance of the photoresist are not ignificantly
    affected.

    目錄 摘要............................................ I Abstract.......................................III 誌謝............................................IV 目錄.............................................V 圖目錄...........................................X 表目錄....................................... XIII 第一章緒論.......................................1 1-1 前言.........................................1 1-2 研究動機.....................................3 第二章文獻回顧及原理.............................4 2-1 聚苯噁唑(Polybenzoxazole,PBO)的發展與應用...4 2-2 感光性高分子.................................6 2-2-1 感光性高分子的發展與應用...................6 2-2-2 感光性聚苯噁唑(PSPBO)的應用................9 2-3 高分子/黏土奈米複合材料的發展與應用.........11 2-3-1 黏土之簡介............................... 11 2-3-2 高分子/黏土奈米複合材料之製備方法.........14 2-3-3 高分子/黏土奈米複合材料之型態.............16 2-3-4 高分子/黏土奈米複合材料之發展趨勢.........18 2-4 微影成像技術(Microlithography)及原理......20 2-4-1 表面清洗..................................20 2-4-2 塗底......................................21 2-4-3 上光阻....................................23 2-4-4 軟烤......................................23 2-4-5 曝光......................................25 2-4-6 曝後烤....................................26 2-4-7 顯影......................................28 2-4-8 硬烤......................................28 2-4-9 蝕刻......................................28 2-4-10 光阻剝除.................................29 2-5 光阻特性....................................29 2-5-1 感度......................................32 2-5-2 對比(Contrast) ...........................33 2-5-3 解析度(Resolution)........................34 2-5-4 熱穩定性(Thermal stability)...............34 2-5-5 接著性(Adhesion)..........................34 第三章實驗步驟..................................35 3-1 實驗用藥品與儀器............................35 3-1-1 藥品......................................35 3-1-2 實驗儀器..................................36 3-2 實驗步驟....................................37 3-2-1 黏土改質..................................37 3-2-2 聚苯噁唑前驅物-聚羥醯胺之合成.............38 3-2-3 感光性聚苯噁唑/黏土奈米複合材料之合成.....40 3-3 結構鑑定與分析..............................44 3-3-1 固有黏度(Inherent viscosity) 之測定.......44 3-3-2 紅外線光譜儀(FTIR) 分析...................44 3-3-3 核磁共振光譜(1H-NMR) 分析.................44 3-3-4 元素分析儀................................45 3-3-5 X-ray 繞射(XRD) 分析......................45 3-3-6 穿透式電子顯微鏡(TEM)觀察.................46 3-3-7 熱重損失分析(TGA) ........................46 3-3-8 微差掃描熱(DSC) 分析......................46 3-3-9 熱機械分析(TMA) ..........................47 3-3-10 穿透度分析...............................47 3-3-11 紫外-可見光吸收光譜分析..................47 3-3-12 吸濕性測試...............................48 3-3-13 溶解度測試...............................48 3-3-14 薄膜機械性質分析.........................48 3-4 微影製程....................................48 3-4-1 矽晶片表面處理............................48 3-4-2 配製光阻劑................................49 3-4-3 旋轉塗佈..................................49 3-4-4 預烤......................................49 3-4-5 曝光......................................50 3-4-6 顯影......................................50 3-4-7 PHA 環化反應..............................50 3-4-8 圖案的觀察................................50 3-4-9 溶解速率的計算............................50 3-4-10 特性曲線的製作...........................51 第四章結果與討論................................52 4-1 聚苯噁唑( PBO )的合成與性質鑑定.............52 4-1-1 聚苯噁唑(PBO)及前驅物-聚羥醯胺(PHA)之合成.52 4-1-2 前驅物聚羥醯胺(PHA) 之鑑定................53 (a) 固有黏度測定(Inherent viscosity)............53 (b) 傅立葉紅外線光譜( FT-IR )之鑑定.............53 (c) 核磁共振光譜( 1H-NMR )之鑑定................53 4-1-3 聚苯噁唑(PBO) 之鑑定......................54 (a) 元素分析....................................54 (b) 傅立葉紅外線光譜( FT-IR )之分析.............54 4-2 奈米複合材料之製備與分析....................55 4-2-1 奈米複合材料之製備........................55 4-2-2 有機黏土之分析............................55 (a) 傅立葉紅外線光譜( FT-IR )之分析.............55 (b) 熱重損失分析................................56 (c) X-ray 繞射分析..............................56 4-2-2 PBO/clay 奈米複合材料之分析...............57 (a) X-ray 繞射分析..............................57 (b) 穿透式電子顯微鏡(TEM)之分析.................57 4-3 熱性質分析..................................58 4-3-1 熱膨脹係數之分析..........................58 4-3-2 玻璃轉移溫度之分析........................59 4-3-3 熱重損失分析..............................60 4-3-4 恆溫耐熱性分析............................61 4-4 機械性質分析................................61 4-5 吸濕性測試..................................62 4-6 溶解度量測..................................63 4-7 感光性聚苯噁唑/黏土之特性分析...............64 4-7-1 UV-Visible 光譜分析.......................65 (a) 穿透光譜分析................................65 (b) 吸收光譜分析................................65 4-7-2 微影特性..................................66 (a) 不同固含量之膜厚與轉速的關係................66 (b) 預烤溫度與時間之選擇........................66 (c) 顯影液濃度之選擇............................67 (d) PIC-3 含量之選擇............................67 (e) 特性曲線的製作..............................68 (f) OM之圖案觀察................................69 (g) SEM 之圖案觀察..............................69 第五章結論.................................... 102 參考文獻...................................... 104

    1. Ghosh, M. K.; Mittal(ed.) K. L. In Polyimides, Fundamentals and Applications ; 1996, Marcel Dekker , New York
    2. Wolfe, J.E. In Encyclopedia of Polymer Science and Technology ;1988,Vol.11(Eds,Mark; H,F.; ikales, N.M.; Overberger, C.G.), Wiley, New York, 601
    3. Wolfe ,J.E. ; Arnold ,F.E. Macromolecules, 1981 , 14, 90
    4. McPherson, J. W.; Dunn, C. F. J. Vac. Sci. Technol. 1987, 5,1321.
    5. Yost, F. G. Scripta Mat., 1989, 23, 1323.
    6. Dang, C. D.; Mather, P. T.; Alexander, M. D. JR.; Grayson, C.J.; Houtz, M. D.; Spry, R. J.; Brnold, F. E. Journal of Polymer Science:Part A: Polymer Chemistry, 2001, 38, 1991.
    7. Joseph, W. D.; Abed, J. C.; Mercier, R.; McGrath, J. E. Polymer, 1994, 35, 5046.
    8. Haba, O.; Okazaki, M.; Nakayama, T.; Ueda, M. J. Photopolym. Sci.Technol., 1997, 10, 55.
    9. Seino, A.; Mochizuki, O.; Haba, O.; Ueda, M. J. Polym. Sci.,1998, 36, 2261.
    10. Joseph, W. D.; Mercier, R.; Prasad, A.; Marand, H.; McGrath, J. E. Polymer, 1993, 24, 685.
    11. Tokoh, A. Photosensitive Polymers, 1999, Vol.12, 89.
    12. 劉瑞祥,感光性高分子,復文書局
    13. Kerwin, R.E.; Goldrick, M.R. Polym.Eng.Sci., 1971, 11(5),426-430
    14. Rubener, R.; Ahne, H.; Kühn, E.; Kolodxiej. G. Photogr.Sci.Eng., 1979, 23(5), 303~309
    15. 許聯崇, 高分子會訊, 民90, 第三卷第四期, p4.
    16. 金進興, 材料與社會, 1991, 第5期,第6卷,p80-85
    17. Akelah, A.; Moet,A. J. Appl. Polym. Sci., 1994, 55, 153
    18. Reichle, W. T.; S.Y. Kong ; Everhart, D. S. J. Catalyst,1986, 101, 352
    19. Depege, C.; Elmetoui, F. E.; Forano, C. ; Roy, A. D. Chem. Mater., 1996, 8, 952
    20. Giannels,E.P.; Krishnamoorti,R.; . Manias, E Adv. Polym. Sci., 1999,118 ,108
    21. Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R. In Introduction to Ceramiccs ,1975, 594-596.
    22. Theng, B. K. G. In The Chemistry of Play-Organic reactions,1974, 264-267
    23. J. F.Lee Clays Clay Miner, 1990, 38, 113.
    24. J. Wu; Lerner, M. Chem. Mater, 1993, 5, 835.
    25. Giannelis, E. P. Adv. Mater, 1996, 8, 29.
    26. Gelfer, M. Y.; Burger, C.; Hsiao, B. S.; Chu, B.; Song, H. H.; Carlos, A.O.; L. Liu ; Si, M.; Rafailovich, M. Polymeric Materials: Science &Engineering, 2001, 85, 16.
    27. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res., 1993, 8, 1179.
    28. Yokota, R.; Horiuchi. R.; Kochi, M.; Soma, H.; Mita, I. J. Polym. Sci:Polym. Lett., 1988, 26, 215.
    29. Giannelis,E. P. Adv. Mater. , 1996, 8, p. 29
    30. Akelah, A.; Salahuddin, N.; Hiltner, A.; Baer,E. ; Moet,A. Abstracts of Papers of The American Chemical Society, 1994, 208, p. 117
    31. Zilg, C.; Thomann, R.; Mulhaupt, R.; Finter, J. Adv. Mater. , 1999, 11, p. 49-52 106
    32. Magaraphan, R.; Lilayuthalert, W.; Sirivat, A.; Schwank, J. W. Composites Sci. and Technol., 2001, 61, 1253
    33. Agag, T.; Koga, T.; Takeichi, T. Polymer , 2001, 42, 339.
    34. P. C. Z. Wang ; T. J. Appl. Clay Sci., 1999,15, 11
    35. Alexandre, M.; Dubois, P. Mater. Sci. and Eng., 2000, 28, 1
    36. Yano,K.; Usuki,A.; Okada,A.; Kurauchi,T.; Kamigaito,O. J.Polym. Sci., Part A: Polym. Chem., 1993, 31, 2493
    37. A. Gu; S.W. Kuo; F.C. Chang; J. Appl. Polym. Sci., 2001, 79,1902
    38. J. M. Yeh; S. J. Liou; C.Y. Lai; P. C. Wu; T. Y. Tasi; Chem. Of Mater., 2001,13, 1191.
    39. 郭文法, 工業材料, 1997, 125期, pp.129.
    40. 廖建勛, 工業材料, 1997, 125期, pp. 108.
    41. 廖建勛, 化工資訊, 1998, 2, 20.
    42. 賴宏仁, 工業材料, 1999, 153期, 94.
    43. 郭俊鑫, 工業技術研究院材料研究所, 2000, 1-4.
    44. 陳啟東,科學月刊,1999, 第30 卷,第3 期,p202~209
    45. Bednár B.; Králicek J.; Zachoval J. In Resists in Microlithography and Printing, Elsevier, Amsterdam, 1993 , 38~43
    46. Thompson, L.F.; Willson, C.G.; Bowden, M.J. Introduction to Microlithography, ACS, Washington, 1983 , 87
    47. 黃炳照, 化工技術, 1991,第7卷, 第9期, 光化學應用專輯, 光阻劑在半導體上之應用
    48. Saburo,N.; Takumi,U.; Toshio,I. In Microlithography fundamentals in semiconductor devices and fabrication technology, 1998, Marcel
    Dekker, New York
    49. Miyagawa,K.; Naruse,K.; Ohnishi, S. Progress in Organic Coatings, 2001, 42, 20-28.
    50. O. Süs Liebigs Ann. Chem., 1994, 556, 65
    51. Skoog, D. A. ; Leary, J. J. In Saunders College Publishing, 1992, US, pp.252
    52. Morikawa ,A.; Iyoku, Y. ; Kakimoto, M. ; Imai, Y. Journal of Materials Chemistry, 1992,Vol.2, pp.679
    53. Lan, T. ; Kaviratna, P. D. ; Pannavaia,T. J. Chemistry of Materials, 1994, 6 , 573

    下載圖示 校內:2006-06-21公開
    校外:2007-06-21公開
    QR CODE