簡易檢索 / 詳目顯示

研究生: 王柏皓
Wang, Po-Hoa
論文名稱: 混合模式彎矩作用下正交性材料樑脫層成長分析
Analysis of delamination growth in orthotropic beam under mixed-mode bending
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 302
中文關鍵詞: 脫層彈性基底正交性材料相異材料應變能釋放率有限元素分析
外文關鍵詞: elastic foundation, orthotropic material, strain energy release rate, fracture mechanics
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討含邊緣脫層正交性材料樑問題中,相異材料界面下之破壞力學參數,包含應變能釋放率與開口端位移。以Timoshenko’s樑理論,假設彈性基底,加入正向彈簧與剪切彈簧的效應,獲得彈性基底之應力六階微分方程,利用邊界條件及連續條件求解出混合模式彎矩問題中彈性基底之應力,透過彈簧中應力與位移之關係進一步得到裂紋開口位移量,接著利用虛擬裂紋閉合理論推導出模式一與模式二之應變能釋放率,將理論結果與有限元素法之應變釋放率相互驗證比較以確認解析解的正確性。本文另一重點為透過已知裂紋開口端位移量預估裂紋長度,考慮幾種不同負載與材料尺寸下理論結果與有限元素法比較,發現可獲得良好的預估結果,未來可將此理論應用於界面疲勞脫層成長實驗上。

    The problem of a double cantilever beam consists of two dissimilar orthotropic materials under mixed-mode bending is considered in this thesis. The fracture mechanics parameters including the strain energy release rate and the crack mouth opening displacement are obtained by using a Timoshenko beam theory based model. Six differential equations derived from equilibrium are used in combination with boundary and continuity conditions to determine the interfacial stress and displacement solutions. The strain energy release rate for the interface crack is determined by using virtual crack closure integrals. The relationship between the crack length and the crack mouth displacement are also obtained. The analytical solutions are verified by comparing to finite element solutions for selected cases of isotropic and orthotropic beams.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XIII 符號說明 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的與方法 4 1.4 論文架構 5 第二章 理論推導 6 2.1 混合模式彎矩問題 6 2.2 問題求解 15 2.3 破壞力學參數 32 第三章 結果與比較 36 3.1 有限元素法 36 3.2 等向性材料樑 37 3.3 正交性材料樑 66 第四章 結論 96 參考文獻 98 附錄 : 代數運算軟體Maple 程式碼 103

    [1] X. Wu, K. W. Pail and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, amd Manufacturing Technology, Vol. 18, pp. 150-153, 1995.
    [2] J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solid and Structures, Vol. 33, pp. 65-78, 1996.
    [3] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, Singapore, 1970.
    [4] J. G. Williams, “End corrections for orthotropic DCB specimens,” Composites Science and Technology, Vol. 35, pp. 367-376, 1989.
    [5] 王建智,含邊緣裂紋樑受混合模式彎矩之破壞力學分析,碩士論文,國立成功大學,2012。
    [6] L. A. Carlsson, J. W. Gillespie and JR and R.B. Pipes, “On the analysis and design of the end notched flexure (ENF) specimen for mode II testing,” Journal of Composite Materials, Vol. 20, pp.594-604, 1986.
    [7] J. Zhou and T. He, “On the analysis of the end-notched flexure specimen for measuring mode II fracture toughness of composite materials,” Composites Science and Technology, Vol. 50, pp. 209-213, 1994.
    [8] C. R. Corleto and H. A. Hongan, “Energy release rates for the ENF specimen using a beam on an elastic foundation,” Journal of Composite Materials, Vol. 29, pp. 1420-1436, 1995.
    [9] J. Wang and P. Qiao, “Novel beam analysis of end notched flexure specimen for mode-II fracture,” Engineering Fracture Mechanics, Vol. 71, pp.219-231, 2004.
    [10] Z. Liu, R. F. Gibson and G. M. Newaz, “Improved analytical models for mixed-mode bending tests of adhesively bonded joints,” The Journal of Adhesion, Vol. 78, pp. 245-268, 2002.
    [11] J. Wang and P. Qiao, “Interface crack between two shear deformable elastic layers,” Journal of the Mechanics and Physics of Solids, Vol. 52, pp.891-905, 2004.
    [12] J. Wang and P. Qiao, “Mechanics and fracture of crack tip deformable bi-material interface,” International Journal of Solids and Structures, Vol. 41, pp. 7423–7444, 2004.
    [13] S. Bennati, M. Colleluori and D. Corigliano, P. S. Valvo, “An enhanced beam-theory model of the asymmetric double cantilever beam(ADCB) test for composite laminates, ” Composites Science and Technology, Vol. 69, pp. 1735–1745, 2009.
    [14] S. Bennati, P. Fisicaro and P. S. Valvo, “An enhanced beam-theory model of the mixed-mode bending (MMB) test-Part I:Literature review and mechanical model, ” Meccanica, Vol. 48, pp. 443–462, 2013.
    [15] 華啟安,含邊緣脫層裂紋之疊層複合材料樑受混合模式彎矩之破壞力學分析,碩士論文,國立成功大學,2013。
    [16] ASTM D6671-06, “Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites,” West Conshohocken, pp. 1-13, 2006.
    [17] E. Suhir, “Stresses in Bi-Metal Thermostats, ” Journal of Applied Mechanics, Vol. 53, pp. 657–660, 1986.
    [18] M. F. Kannine, “An augmented double cantilever beam model for studying crack propagation and arrest,” International Journal of Fracture, Vol. 9, pp. 83-92, 1973.
    [19] S. G. Lekhnitskii, S. W. Tsai and T. Cheron, Anisotropic Plates, Gorden and Breach Science Publishers, NY, 1968.
    [20] R. F. Gibson, Principles of Composite Material Mechanics, CRC Press, Boca Raton, FL, 2007.
    [21] F. E. Penado, “A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer,” Journal of Composite Materials, Vol. 27, pp. 383-407, 1993.
    [22] S. Bennati, P. Fisicaro and P. S. Valvo, “An enhanced beam-theory model of the mixed-mode bending (MMB) test- Part II: Applications and results,” Meccanica, Vol. 48, pp. 465-484, 2013.
    [23] J. G. Williams, “On the calculation of energy release rates for cracked laminates, ” International Journal of Fracture, Vol. 36, pp. 101–119, 1988.
    [24] Y. Wen and C. Basaran, “An analytical model for thermal stress analysis of multi-layered microelectronic packaging,” Mechanics of Materials, Vol. 36, pp. 369-385, 2004.
    [25] T. Yokozeki, “Energy release rates of bi-material interface crack including residual thermal stresses: Application of crack tip element method,” Engineering Fracture Mechanics, Vol. 77, pp. 84-93, 2010.
    [26] J. Wang and P. Qiao, “On the energy release rate and mode mix of delaminated shear deformable composite plates,” International Journal of Solids and Structures, Vol. 41, pp. 2757-2779, 2004.
    [27] K. Shahin and F. Taheri, “The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints,” International Journal of Solids and Structures, Vol. 45, pp. 6284-6300, 2008.
    [28] P. Cornetti, V. Mantic and A. Carpinteri, “Finite Fracture Mechanics at elastic interfaces,” International Journal of Solids and Structures, Vol. 49, pp. 1022-1032, 2012.
    [29] Z. Liu, Y. Huang, Z. Yin, S. Bennati and P. S. Valvo, “A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints,” International Journal of Adhesion & Adhesives, Vol. 54, pp. 112-123, 2014.
    [30] Q. Luo and L. Tong, “Energy release rates for interlaminar delamination in laminates considering transverse shear effects,” Composite Structures, Vol. 89, pp. 235-244, 2009.
    [31] T.-C. Chiu and H.-C. Lin, “On the Homogenization of Multilayered Interconnect for Interfacial Fracture Analysis,” IEEE Transactions on Components and Packaging Technologies, Vol. 31, pp. 388-398, 2008.

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE