簡易檢索 / 詳目顯示

研究生: 傅靖雯
Fu, Jing-Wun
論文名稱: 高分子有機介電層於十八烷基駢苯衍生物薄膜電晶體的應用
Polymer Dielectrics applied in N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide-based thin film transistors
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 十八烷基駢苯衍生物薄膜電晶體有機介電層交聯聚4-乙基苯酚X-ray繞射原子力顯微鏡拉曼光譜分析
外文關鍵詞: Perylene, C-PVP, organic thin-film transistor, atomic force microscopy (AFM), Raman spectroscopy
相關次數: 點閱:150下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究使用有機高分子介電層之N型有機薄膜電晶體(organic thin-film transistors, OTFTs)。以自行調配的交聯聚4-乙基苯酚(C-PVP),PVP與PMF為8:4 wt%的C-PVP取代二氧化矽當作有機薄膜電晶體的絕緣層,同時用不同PVP與PMF重量百分濃度比的C-PVP作為修飾層。並使用自行合成的十八烷基駢苯衍生物(N,N'-dioctadecyl-3,4,9,10- perylene tetracarboxylic diimide, PTCDI-C18H37)作為半導體主動層材料製作有機薄膜電晶體元件,量測其電特性與薄膜特性比較之間差異。
    本實驗分為兩個部份,第一部分研究以不同PVP與PMF重量百分比濃度C-PVP修飾層對元件電特性之影響。由於PTCDI-C18H37直接成長在PVP與PMF為8:4 wt%的C-PVP絕緣層上所製作的元件,次臨界擺幅(S.S.)與OFF電流(IOFF)過大。可能是因為C-PVP絕緣層與PTCDI-C18H37薄膜的表面能的非極性項不匹配所造成,所以我們在絕緣層旋轉塗佈上不同PVP與PMF重量百分濃度比例的C-PVP當作修飾層,改善PTCDI-C18H37成膜環境。從XRD分析可發現PTCDI-C18H37薄膜成長在以PVP與PMF為4:2 wt% C-PVP修飾層所製作的元件有最大的結晶尺寸。所測量出的元件電特性也較其他PVP與PMF重量百分濃度比例C-PVP作為修飾層所製成的元件佳。由AFM分析結果推測PTCDI-C18H37薄膜的結晶品質可能是受到C-PVP修飾層表面孔洞數量及面積所影響。接著將修飾層硬烤時間加倍,發現C-PVP修飾層表面孔洞缺陷隨硬烤時間增加變大,使PTCDI-C18H37薄膜結晶性下降而影響載子傳輸。其中以PTCDI-C18H37薄膜成長在以PVP與PMF為2:4 wt%的C-PVP修飾層所製作的元件電特性與薄膜特性變化最小,所以推論PVP與PMF為2:4 wt%的C-PVP修飾層有較佳的溫度耐性。
    本論文第二部份研究將PTCDI-C18H37薄膜成長在不同溫度的PVP與PMF為2:4 wt%之C-PVP修飾層所製作成的元件,比較PTCDI-C18H37薄膜成膜時基板溫度對電特性與薄膜特性的影響。由XRD分析可以發現當基板溫度提高晶格尺寸也增加,表示PTCDI-C18H37薄膜結晶性變好。從拉曼相減光譜也可以看出隨著成膜時基板溫度提高,PTCDI-C18H37薄膜結晶性提高而導致分子振動因自由度下降而減小。但從AFM圖可以看出當基板溫度增加時,C-PVP修飾層表面缺陷變多,所以造成基板溫度為100°C條件下的PTCDI-C18H37薄膜成長受到表面缺陷影響最多,因此所量量測到的PTCDI-C18H37薄膜晶格尺寸最小,以此條件製作的元件量測出的電特性也最差。因此我們發現C-PVP高分子膜對溫度極為敏感,長時間的加溫過程導致C-PVP修飾層表面劣化。由於頂部接觸式(top contact, TC)薄膜電晶體其通通在修飾層表面附近,推測元件電特性表現受到修飾層表面缺陷的影響大於基板加溫效應所提升的結晶性,所以整體元件電特性表現變差。

    A polymer, cross-linked poly(4-vinylphenol) (C-PVP), is used as the dielectric layer of organic thin-film transistors (OTFTs) whose organic semiconductor, N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18H37), was synthesized. The effects of the concentrations of C-PVP modification dielectric layers on the thin-film properties of PTCDI-C18H37 are studied. An OTFT with a low leakage current is obtained using a C-PVP polymer film with a weight concentration ratio of PVP to PMF of 8:4 as an insulating layer. C-PVP films with weight concentration ratios of PVP to PMF of 2:1, 2:4, 4:2, and 8:4, respectively, are used as the modification layer between the C-PVP (8:4) gate dielectric and PTCDI-C18H37 thin film. X-ray diffraction and Raman spectroscopy analyses show that the degree of molecular freedom and the crystalline size of PTCDI-C18H37 thin films deposited on a C-PVP surface with a concentration ratio of PVP to PMF of 8:4 are smaller than those of films grown at PVP to PMF weight concentrations of 2:1, 2:4, and 4:2. An excellent PTCDI-C18H37-based OTFT is obtained by modifying a device with a C-PVP film whose weight concentration ratio of PVP to PMF is 4:2. The baking time of the C-PVP modification layers is varied to study the thermal effects in the polymers. Long baking time for C-PVP modification layers causes surface defects, reducing the performance of PTCDI-C18H37-based OTFTs.
    The PTCDI-C18H37 film is deposited on a SiO2 substrate modified by C-PVP with a weight concentration ratio of PVP to PMF of 2:4 at room temperature, 50, 75, and 100 °C. From the XRD analyses, the crystalline size of the PTCDI-C18H37 film deposited at 75 °C was the largest. A higher deposition temperature causes more holes on the surface of C-PVP modification layers, which indicates that an increase of electron traps results in a decrease of electron mobility.

    中文摘要I ABSTRACTIV 致謝VI 目錄VII 表目錄XI 圖目錄XIII 第一章簡介1 1.1有機半導體簡介 1 1.2研究動機3 第二章有機電晶體原理6 2.1有機薄膜電晶體的基本構造6 2.2有機薄膜電晶體的戴子傳輸及電晶體操作原理7 2.2.1有機薄膜電晶體的戴子傳輸7 2.2.2有機薄膜電晶體的操作原理[16]8 2.3有機薄膜電晶體量測 9 2.3.1前言9 2.3.2載子遷移率(mobility, μ)9 2.3.3臨界電壓(threshold voltage, VT)10 2.3.4電流開關比(On/Off current ratio, Ion/Ioff)10 2.3.5次臨界擺幅 (subthreshold swing, S.S.)11 第三章烷基駢苯衍生物材料合成、有機薄膜電晶體製程及分析方法17 3.1前言17 3.2有機化合物合成技術、高分子絕緣層與修飾層配製18 3.2.1有機化合物合成技術18 3.2.2高分子介電層與修飾層配製19 3.3有機薄膜電晶體製作20 3.3.1基板清洗步驟 20 3.3.2絕緣層與修飾層製程20 3.3.3半導體元件製程與技術21 3.4分析儀器22 3.4.1表面能量測系統(Surface energy)22 3.4.2X-Ray繞射量測系統(X-Ray Diffraction, XRD)23 3.4.3原子力顯微鏡(Atomic Force Microscope, AFM)24 3.4.4微拉曼光譜儀(micro-Raman Spectrometry )25 第四章不同濃度交聯聚4-乙基苯酚做高分子修飾層對十八烷基駢苯衍生物薄膜研究36 4.1前言36 4.2不同濃度修飾層對半導體層PTCDI-C18H37電性分析38 4.2.1實驗參數與變因38 4.2.2電特性量測分析38 4.3不同濃度修飾層對半導體層PTCDI-C18H37材料分析41 4.3.1前言41 4.3.2X-Ray繞射分析42 4.3.3原子力顯微鏡表面分析44 4.3.4拉曼光譜分析 45 4.4結論46 第五章交聯聚4-乙基苯酚做高分子修飾層生長於不同基板溫度的十八烷基駢苯衍生物薄膜研究72 5.1前言72 5.2高分子修飾層對成長於不同基板溫度的半導體層PTCDI-C18H37電性分析74 5.2.1實驗參數與變因74 5.2.2電特性量測分析75 5.3高分子修飾層對成長於不同基板溫度的半導體層PTCDI-C18H37薄膜分析76 5.3.1前言76 5.3.2X-Ray繞射分析77 5.3.3原子力顯微鏡分析78 5.3.4拉曼光譜分析 79 5.4結論81 第六章結論與未來研究方向100 6.1結論100 6.2未來研究方向101 參考文獻 102

    [1] D. Kumaki, et al., "Influence of H(2)O and O(2) on threshold voltage shift in organic thin-film transistors: Deprotonation of SiOH on SiO(2) gate-insulator surface," Applied Physics Letters, vol. 92(9), 2008.
    [2] G. Guillaud, et al., "Field-Effect Transistors Based on Intrinsic Molecular Semiconductors," Chemical Physics Letters, vol. 167(6), pp. 503-506, 1990.
    [3] Z. A. Bao, et al., "New air-stable n-channel organic thin film transistors," Journal of the American Chemical Society, vol. 120(1), pp. 207-208, 1998.
    [4] J. G. Laquindanum, et al., "n-channel organic transistor materials based on naphthalene frameworks," Journal of the American Chemical Society, vol. 118(45), pp. 11331-11332, 1996.
    [5] J. R. Ostrick, et al., "Conductivity-type anisotropy in molecular solids," Journal of Applied Physics, vol. 81(10), pp. 6804-6808, 1997.
    [6] M. H. Yoon, et al., "Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics," Journal of the American Chemical Society, vol. 127(29), pp. 10388-10395, 2005.
    [7] A. R. Brown, et al., "Organic N-Type Field-Effect Transistor," Synthetic Metals, vol. 66(3), pp. 257-261, 1994.
    [8] R. C. Haddon, et al., "C-60 Thin-Film Transistors," Applied Physics Letters, vol. 67(1), pp. 121-123, 1995.
    [9] R. J. Chesterfield, et al., "Organic thin film transistors based on N-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature," Journal of Physical Chemistry B, vol. 108(50), pp. 19281-19292, 2004.
    [10] M. Ichikawa, et al., "High mobility n-type thin-film transistors based on N,N '-ditridecyl perylene diimide with thermal treatments," Applied Physics Letters, vol. 89(11), pp. 112108-1 - 112108-3, 2006.
    [11] Z. Bao, et al., "Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,N '-bis(heptafluorobutyl)3,4 : 9,10-perylene diimide," Applied Physics Letters, vol. 91(21), pp. 212107-1 - 212107-3, 2007.
    [12] S. Huttner, et al., "n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers," Applied Physics Letters, vol. 92(9), pp. 093302-1 - 093302-3, 2008.
    [13] W. Xu, et al., "Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor," Journal of Materials Chemistry, vol. 20(6), pp. 1203-1207, 2010.
    [14] H. G. Jeon, et al., "Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain," Journal of Applied Physics, vol. 108(12), pp. 124512-1 - 124512-6, 2010.
    [15] 林士廷, 有機發光二極體光源之偏極化研究: 國立成功大學碩
    士論文, 2004.
    [16] C. R. Newman, et al., "Introduction to organic thin film transistors and design of n-channel organic semiconductors," Chemistry of Materials, vol. 16(23), pp. 4436-4451, 2004.
    [17] D. R. T. Zahn, et al., "Transport gap of organic semiconductors in organic modified Schottky contacts," Applied Surface Science, vol. 212(pp. 423-427, 2003.
    [18] 林益生, 以烷基駢苯衍生物作為主動層之有機薄膜電晶體: 國立成功大學碩士論文, 2008.
    [19] 陳令妮, PTCDI-C8H17 薄膜之磊晶機制: 國立成功大學碩士論文, 2009.
    [20] Z. A. Bao, et al., "High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors," Journal of the American Chemical Society, vol. 131(17), pp. 6215-6228, 2009.
    [21] Z. Bao, et al., "Organic field-effect transistors with high mobility based on copper phthalocyanine," Applied Physics Letters, vol. 69(20), pp. 3066-3068, 1996.
    [22] F. C. Chen and C. H. Liao, "Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics," Applied Physics Letters, vol. 93(10), 2008.
    [23] S. Verlaak, et al., "Modeling of transport in polycrystalline organic semiconductor films," Applied Physics Letters, vol. 82(5), pp. 745-747, 2003.
    [24] K. Vasseur, et al., "A Growth and Morphology Study of Organic Vapor Phase Deposited Perylene Diimide Thin Films for Transistor Applications," Journal of Physical Chemistry C, vol. 114(6), pp. 2730-2737, 2010.
    [25] C. Rolin, et al., "High mobility electron-conducting thin-film transistors by organic vapor phase deposition," Applied Physics Letters, vol. 93(3), 2008.
    [26] 黃佑沂, 不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究: 國立成功大學碩士論文, 2007.
    [27] W. Y. Chou, et al., "Application of nanoimprinting technology to organic field-effect transistors," Applied Physics Letters, vol. 96(8), 2010.

    下載圖示 校內:2016-08-18公開
    校外:2016-08-18公開
    QR CODE