| 研究生: |
陳定成 Chen, Din-Chang |
|---|---|
| 論文名稱: |
利用聲音訊號迴授對銑切過程之抖顫分析與補償 Chatter Analysis and Compensation for Milling Process by Acoustic Signal Feedback |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 非侵入式量測 、穩定性分析 、抖顫現象 、即時抖顫補償 |
| 外文關鍵詞: | Non-invasive measurement, Stability Lobes, Real-time chatter compensation |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在提出即時抖顫補償機制(Real-time Chatter Compensation Process),由麥克風(Microphone)擷取切削聲訊(Acoustic Cutting Signal)監測切削狀態,經數位訊號處理(Digital Signal Processing)萃取出抖顫聲訊(Acoustic Chatter Signal)作為主軸轉速調變 (Spindle Speed Adaptive Tuning)之迴授訊號。傳統抖顫抑制的方式為根據穩定性分析圖(Stability Lobes)挑選合適的切削工作點(Cutting Operating Point),該工作點若有抖顫現象(Chatter)發生,則須於最短的時間內脫離此切削工作點。傳統抖顫量測多以加速規(Accelerometer)監測主軸動態或使用動力計(Dynamometer)偵測切削力變化等,皆屬於侵入式(Invasive)量測方式,增加成本且占空間。本研究利用dSPACE數位類比資料轉換與擷取設備量測切削聲訊為非侵入式(Non-invasive)量測,不但不須改裝銑床工作台且能即時診斷抖顫程度。最後搭配電腦工程運算軟體MATLAB/Simulink撰寫控制模組進行抖顫抑制實驗,由切削表面精度證明本論文所提利用聲音訊號迴授之即時抖顫補償機制之抖顫抑制之效能。
This thesis purposes how the real-time chatter compensation can be realized by acoustic cutting signal from microphones, and verifies the efficacy of adaptive spindle speed tuning. The traditional approach for trembles attenuation is to select suitable operating points according to the stability lobes. If any chatter occurs at that working point, it has to run away from that working point in shortest time. The conventional trembles measurement is mostly to monitor the dynamics of the spindle by accelerometers or detect the cutting force by dynamometers. Most of these traditional methodologies are invasive, expensive and cumbersome. Instead, the acoustic cutting signal which is fed into dSPACE digital/analog data acquisition system in this research is a non-invasive. Finally, by using MATLAB/Simulink to implement the controller, the proposed chatter suppression algorithm is verified by intensive experiments. By inspection on the precision of the workpiece surface after milling, efficiency of the real-time chatter control via acoustic signal feedback is further assured.
[1] http://www.tmtf.org.tw/chinese/#, 2007年台灣工具機產銷統計,王正青。
[2] http://www.tmtf.org.tw/chinese/#, 2007年12月台灣工具機產業現況報導,王正青。
[3] U. Bravo, O. Altuzarra, L. N. Lopez de Lacalle, J. A. Sanchez and F. J. Campa, “Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine”, International Journal of Machine Tools & Manufacture, V. 45, pp. 1669-1680, 2005.
[4]
http://automation.mt.ntnu.edu.tw:9999/ecam/ls/machine/mill_teach/mill_tool.jsp, 銑刀分類。
[5] M. C. Shaw, Metal Cutting Principles, Oxford University Press, Oxford, 1984.
[6] 傅光華,切削工具學,高立圖書有限公司,1986。
[7] X. W. Liu, K. Cheng, D. Webb and X. C. Luo, “Improved Dynamic Cutting Force Model in Peripheral Milling Part I: Theoretical Model and Simulation”, International Journal of Advance Manufacturing Technology, V. 20, pp. 631-638, 2002.
[8] Z. Zhang, L. Zheng, Z. Li, D. Liu, L. Zhang and B. Zhang, “A Cutting Force Model for a Waved-Edge End Milling Cutter”, International Journal of Advance Manufacturing Technology, V. 21, pp. 403-410, 2003.
[9] X. W. Liu, K. Cheng, A.P. Longstaff, M. H. Widiyarto and D. Ford, “Improved Dynamic Cutting Force Model in Ball-End Milling Part I: Theoretical Modeling and Experimental Calibration ”, International Journal of Advance Manufacturing Technology, V. 26, pp. 457-465, 2005.
[10] S. J. Kim, H. U. Lee and D. W. Cho, “Feedrate Scheduling for Indexable End Milling Process Based on an Improved Cutting Force Model”, International Journal of Machine Tools & Manufacture, V. 46, pp. 1589-1597, 2006.
[11] T. Delio, J. Tlusty and S. Smith, “Use of Audio Signals for Chatter Detection and Control“, ASME Journal of Engineering for Industry, V. 114, pp. 146-157, 1992.
[12] E. Soliman and F. Ismail, “A Control System for Chatter Avoidance by Ramping the Spindle Speed“, ASME Journal of Manufacturing Science and Engineering, V. 120, pp. 674-683, 1998.
[13] Y. Altintsa and E. Budak, “Analytical Prediction of Stability Lobes in Milling“ , Annals of the CIRP, V. 44/1, pp. 357-362, 1995.
[14] R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling and H. Nijmeijer, “Prediction of Regenerative Chatter by Modeling and Analysis of High-speed Milling“, International Journal of Machine Tools & Manufacture, V. 43, pp. 1437-1446, 2003.
[15] E. Solis, C. R. Peres, J. E. Jimenez, J. R. Alique and J. C. Monje, “A New Analytical-experimental Method for the Identification of Stability Lobes in High-speed Milling“, International Journal of Machine Tools & Manufacture, V. 44, pp. 1591-1597, 2004.
[16] S. K. Kim and S.-Y. Lee, “Chatter Prediction of End Milling in A Vertical Machining Center“, Journal of Sound and Vibration, V. 241(4), pp. 567-586, 2001.
[17] S. D. Merdol and Y. Altintas, “Multi Frequency Solution of Chatter Stability for Low immersion Milling“, Journal of Manufacturing Science and Engineering, Transactions of the ASME, V. 126, pp. 459-466, 2004.
[18] T. Insperger, B. P. Mann, T. L. Schmitz, A. P. Peters, G. Stepan and P. V. Bayly, “Effects of Radical Immersion and Cutting Direction on Chatter Instability in End-Milling, Proceedings of IMECE“, MED-39116, 2002.
[19] 徐盛良,”磁浮軸承之磁極設計與撓性轉軸動態分析”,碩士論文,成功大學,民國95年。
[20] Su-Chen Jonathon Lin, “Computer Numerical Control”, 高立出版社, 1999.
[21] S.A. Tobisa, Machine Tool Vibration. Blackie and Sons Ltd.
[22] F. Koenigsberger and J. Tlusty, Machine Tool Structures-Vol. I: Stability Against Chatter, Pergamon Press.
[23] F. Ismail and R. Ziaei, “Chatter Suppression in Five-axis Machining of Flexible Parts”, International Journal of Machine Tools & Manufacture, V. 42, pp. 115-122, 2002.