研究生: |
王鈺林 Wang, Ulin |
---|---|
論文名稱: |
正型水性顯影感光性聚亞醯胺/黏土奈米複合材料之研究 Positive-working Aqueous Base Developable Photosensitive Polyimide Precursor/Clay Nanocomposites |
指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 奈米複合材料 、感光性聚亞醯胺 |
外文關鍵詞: | Photosensitive, Polyimide, Nanocomposites |
相關次數: | 點閱:53 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以添加有機黏土於感光性聚醯亞胺(polyimide, PI)的前驅物中,形成一聚醯亞胺/黏土奈米複合材料的方法來製備低應力的正型鹼性水溶顯影的感光性聚醯亞胺。首先經由有機胺鹽和鈉蒙特納石(Na+- mentmorillonite)進行離子交換反應,製成膨潤化有機黏土(organoclay)。兩種PI的前驅物被使用於本研究中,一是聚醯胺脂(polyamic ester),另一是聚醯胺酸(polyamic acid)。聚醯胺脂是由direct polymerization方法合成的BisAPAF-PMDA-Butyl polyamic ester樹脂,其固有黏度(inherent viscosity)為0.23 dL/g。而聚醯胺酸是由PMDA、ODPA及ODA單體以一定比例共聚合而成,其固有黏度為1.00 dL/g。由此兩種PI的前驅物分別和2,3,4-tris(1-oxo-2-diazonaphthoquinone-5-sulfonyloxy)–benzophenone (PIC-3)感光劑及3 wt % 有機黏土製成感光性樹脂配方。由BisAPAF- PMDA-Butyl聚醯胺脂所得到的薄膜的品質不佳,而ODPA-PMDA-ODA 聚醯胺酸可以得到品質良好的薄膜。從X-ray 繞射分析及TEM 觀察,ODPA-PMDA-ODA 聚醯胺酸可以和有機黏土製成奈米分散的複合材料薄膜。而由TMA分析, ODPA-PMDA-ODA 聚醯胺酸和3 wt % 有機黏土製成的奈米複合材料,其熱膨脹係數降低 17 %。吸水性的測試數據顯示,ODPA-PMDA-ODA 聚醯胺酸和3% 有機黏土製成的奈米複合材料,其吸水性下降了4.8%。由ODPA-PMDA-ODA 聚醯胺酸、3 wt.%有機黏土、 40 wt.% 2,3,4-tris(1-oxo-2-diazonaphthoquinone-5-sulfonyloxy) -benzophenone (PIC-3) 感光劑 及NMP所製成的奈米正型鹼性水溶液顯影的感光性聚亞醯胺配方,可得到解析度為10 μm 的line/space圖案,其光敏感度(sensitivity) 為301 mJ/cm2,對比值(contrast) 為1.66。
Low coefficient of thermal expansion (CTE), positive working aqueous base developable photosensitive polyimide (PSPI) precursor/clay nanocomposites have been prepared through the addition of an organoclay to two different polyimide precursors. The organoclay was formed by a cation exchange reaction between a NA+-montmorillonite clay and an ammonium salt of dodecylamine (DOA). The polyimide (PI) precursors used in this study were a polyamic ester (PAE) and a poly(amic acid) (PAA). The PAE was BisAPAF-PMDA-n-butyl polyamic ester, prepared by direct polymerization and having an inherent viscosity of 0.23 dL/g. The PAA copolymer was prepared by polyaddition from pyromellitic dianhydride, oxydiphthalic anhydride and oxydianiline, which had an inherent viscosity of 1.00 dL/g. The two photosensitive resin/clay formulations were prepared separately from these two PI precursors with 2,3,4-tris(1-oxo-2-diazonaphthoquinone -5- sulfonyloxy)-benzophenone (PIC-3) photosensitive compound and 3 wt.% organoclay. The quality of the films obtained from the PAE formulation was not good, and only the films obtained from PAA formulation showed good quality. Both X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that the organoclay was dispersed in the PAA matrix in a nanometer scale. The water absorption of 3 wt.% organoclay added PI film decreased 4.8%, and its CTE decreased by 17 %. The photosensitive PAA/clay nanocomposite showed a sensitivity of 301 mJ/cm2 and a contrast of 1.66 with a 0.2 wt % tetramethylammonium hydroxide developer. A line/space pattern with a resolution of 10 μm was obtained from this formulation.
1. M. T. Bogert and R. R. Renshaw, J. Am. Chem. Soc., 30(8), p1135-1144 (1908).
2. 金進興,工業材料,第114期,第118-125頁,民85。
3. K. Horie and T. Yamashita (ed.), Photosensitive Polyimides, Fundamentals and Applications, Technomic Publishing Co.Inc., Lancaster, PA (1995).
4. S. Komarneni, J. Mater. Chem, 2, p.1219-1230 (1992).
5. G. Elsner, J. Appl. Polym. Sci., 34, p.815 (1987).
6. K. Kinosita, Thin Solid Film, 12, p.17 (1972).
7. J. A. Thornton and D. W. Hoffman, Thin Solid Film, 171, p.5 (1989).
8. D. J. Mark and D. S. Soane, “Polymers for Electronic and Photonic Applications”, C. P. Wong Ed., Academic Press, New York, p.151 (1993).
9. J. L. Hedrick,H. R. Brown, W. Volksen, M. Sanchez, C. J. G. Plummer, J. G. Hilborn, Polymer, 38(3), p.605 (1997).
10. Y. Yamada, High Performance Polymers, 10(1), p.69 (1998).
11. Y. L. Zou, T. L. Alford, J. W. Mayer, Mater. Res. Soc. Symp. Proc., 476, p.255 (1997).
12. M. Angelopoulos, J. Gelorme, S. Swanson, J. Labadie, Mater. Res. Soc. Symp Proc., 323, p.259 (1994).
13. A. E. Nader, K. Imai, J. D. Craig, C. N. Lazaridis, D. O. Murray, M. T. Pottiger,S. A. Dommbchik, W. J. Lautenberger, Polym. Eng. Sci., 32(21), p. 1613 (1992).
14. F. E. Arnold, S. Z. D. Cheng, S. L. C. Hsu, C. J. Lee. F. W. Harris, S. F. Lau, Polymer, 33, p.5179 (1992).
15. S. Numata, T. Miwa, Polymer, 30, p.1170 (1989)
16. K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigato, J. Polym. Sci. Part A : Polym. Chem., 31, p.2493 (1993).
17. H. L. Tyan, Y. C. Liu, K. H. Wei, Chem. Mater., 11, p.1942 (1999).
18. H. D. Stenzenberger, Brit. Polym. J., 15, p.1 (1979).
19. R. W. Lauver, J. Appl. Polym. Sci, 17(8), p.2529-2539 (1979).
20. J. V. Crivello, J. Polym. Sci, 11(6), p.1185-1200 (1973).
21. N. Bilow, A. L. Landis and L. J. Miller, U.S. Patent 3,845,018 (1974).
22. R. A. Meyers, J. Polym. Sci.: Part Al, 7(10), p.2757-2762 (1969).
23. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, p.7-21 (1996).
24. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards and K. L. Olivier, J. Polym. Sci.: Part A, 3, p.1373-1390 (1965).
25. M. K. Ghosh and K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New York, p.15-23 (1996).
26. Y. J. Kim, T. E. Glass, G. D. Lyle and J. E. McGrath, Macromolecules, 26, p.1344-1358 (1993).
27. M. Fujimoto and S. Kumanoya, J. of the Adhesion Soc. of Jpn., 25(3), p.101 (1989).
28. R. Rubner, H. Ahne, E. Kühn and G. Kolodziej, Photogr. Sci. Eng., 23(5), p.303-309 (1979).
29. N. Yoda and H. Hiramoto, J. Macromol. Sci.(Chem.), A21(13&14), p.1641-1663 (1984).
30. A. A. Lin, V. R. Sastri, G. Tesoro and A. Reiser, Macromolecules, 21(4), p.1165-1169 (1988).
31. M. G. Moss, R. M. Cuzmer and T. Brewer, Proc. SPIE, 1086, p.396 (1989).
32. T. Omote, K. Koseki and T. Yamaoka, J. Appl. Polym. Sci., 38(3), p.389-402 (1989).
33. E. G. Ralph, 〝Clay mineralogy〞.2nd ed, New York: McGraw-Hill., p.77-92 (1968)
34. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer, 40, p.4877-4886 (1999).
35. R. E. Grim,〝Clay mineralogy〞.2nd ed, New York : McGraw-Hill., p.77-92 (1969).
36. E. P. Giannelis, Adv. Mater., 8, p.29 (1996).
37. A. Akelah, Moet, A., J. App. Polym. Sci., 55, p.153 (1994).
38. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramiccs, p.594-596 (1975).
39. B. K. G. Theng, The Chemistry of Clay-Organic reactions, p.264-267 (1974).
40. R. E. Grim, Clay Mineralogy, p.331-338. (1968).
41. R. M. Barrer, Clays Clay Miner, p.385 (1989).
42. J. F. Lee, Clays Clay Miner, 38, p.113 (1990).
43. J. Wu, M. Lerner, Chem. Mater, p.835 (1993).
44. E. P.Giannelis, Adv. Mater, 8, p.29 (1996).
45. M. Y. Gelfer, C. Burger, B. S. Hsiao, B. Chu, H. H. Song, A. O. Carlos, L. Liu, M. Si, M. Rafailovich, Polymeric Materials: Science & Engineering, 85, p.16 (2001).
46. Y. Fukushima and S. Inagaki, J, Incl.Phenom., 5, p.473-482 (1987).
47. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and o. Kamigaito, J. Polym. Sci., A, Polym. Chem., 31, p.2493-2498 (1993).
48. K. Yano, A. Usuki, A. Okada, Poly. Sci., A, Poly. Chem., 31, p.2289-2294 (1997).
49. E. P. Giannelis, Adv. Mater., 8, p.29 (1996).
50. S. Komarneni, J. Mater. Chem., 2, p.1219-1230 (1992).
51. J. Y. Wen and G. L. Wilkes, Chem. Mater., 8, p.1667-1681 (1996).
52. R. Yokota, R. Horiuchi., M. Kochi, H. Soma, I. Mita,J. Polym. Sci: Polym. Lett.,26, p.215 (1988).
53. A. Akelah, A. Moet, J. App. Polym. Sci., App. Polym. Sym., 55, p.153 (1994).
54. C. Zilg, R. Thomann, R. Miilhaupt, J. Finter, Adv. Mater., 11, p.49 (1999).
55. P. C. LeBaron, Z. S. Wang, T. Pinnavaia, Appl. Clay Sci., 15, p.11 (1999).
56. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, p.573-575 (1994).
57. Z. K. Zhu, Y. Yang, X. Y. Wang, Y. C. Ke, and Z. N. Qi, J. Appl. Polym. Sci., 73, p.2063-2068 (1999).
58. Z. K. Zhu, Y. Yang, X. Y. Wang, Y. C. Ke, and Z. N. Qi, Polymer, 40, p.4407-4414 (1999).
59. H. L. Tyan, Y. C. Liu, and K. H. Wei, Chem. Mater., 11, p.1942-1947 (1999).
60. H. L. Tyan, K. H. Wei and T. E. Hsieh, J. Polym. Sci., B, Polym. Phys., 38, p.3873-2878 (2000).
61. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, p.3399-3408 (2001)
62. 余君臨,“聚醯亞胺/黏土奈米複合材料之物理化學性質與微結構分析”,國立中山大學碩士論文(2001)。
63. L. F. Thompson, C. G. Wilson and M. J. Bowden, Introduction to Microlithography, ACS, Washington (1994).
64. 林松香,材料與社會,第5期,第6卷,第69-74頁,民80。
65. B. Bednar, J. Kralicek and J. Zachoval, Resists in Microlithography and Printing, Elsevier, Amsterdam, p.38-43 (1993).
66. 黃炳照,化工技術,第7卷,第9期,光化學應用專輯,光阻劑在半導體上之應用,第140-148頁 (1991.9)。
67. A. Tokoh, N. Sashida, E. Takeuchi and T. Hirano, U.S. Patent 5,238,784 (1993).
68. 劉瑞祥,“感光性高分子”,復文書局,台灣(1991)。
69. 李政義,“含羥基可溶性聚亞醯胺之合成及性質研究”,國立成功大學碩士論文(2001)。
70. 邱柏翰,“正型感光性聚亞醯胺樹脂合成之研究”,國立成功大學碩士論文(2000)。
71. E. Chin, F. M. Houlihan, R. A. Venditti, J. K. Gillham In Advances in Polyimide Science and Technology; C. Feger, M. M. Khojasteh, M. S. Htoo, Ed. , Technomic Publishing Co., Inc., p.201-212 (1993).
72. M. Ueda, Mori, H. Makromol. Chem., 194, p.511 (1993).
73. S. K. Park, S. Ha, C. J. Lee, Polymer, 38, p.5001 (1997).
74. R. H. Hayase, N. Kihara, N. Oyasato, S. Matake, Oba, M. SPIE, Advances in Resist Technology and Processing, 1466, p.438 (1991).
75. R. Dammel, Diazonaphthoquinone-Based Resists, SPIE turtorial text, SPIE Optical Engineering Press (1993).
76. C. G. Wilson, In Introduction to microlithography; 2Ed.; L. F. Thompson, C. G. Wilson, M. J. Bowden, Ed., ACS, Washington, D.C.(1994).