| 研究生: |
張恆瑞 Chang, Heng-Jui |
|---|---|
| 論文名稱: |
商用鋁合金AA5052的結構控制及色彩光學之研究 A study on structure control and color optics of commercial aluminum alloy AA5052 |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 陽極氧化鋁 、商用鋁基板 、MDM結構 、CIE1931色度圖 、結構色彩 、薄膜干涉 |
| 外文關鍵詞: | anodized aluminum, commercial aluminum substrate, MDM structure, CIE1931 chromaticity diagram, structural color, thin film interference |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用複合式脈衝陽極氧化(Hybrid Pulse Anodization, HPA)製程技術,在室溫下以0.3 M濃度的草酸處理商用鋁合金基板AA5052,調節不同的電壓參數和陽極時間,製備奈米多孔型陽極氧化鋁模板。同時,通過濺鍍技術在其表面沉積不同種類以及不同厚度的金屬,以增強結構色彩的飽和度,並且探討MDM結構與薄膜干涉機制對於結構色彩及反射光譜的影響。本研究還觀察了陽極氧化成長速率和孔洞形貌,並研究了控制不同實驗參數對於陽極氧化鋁結構色彩的影響。
使用光學量測技術在可見光範圍(350~800 nm)內建立了陽極氧化時間與色譜波長之間的關係,以獲得陽極氧化鋁結構色彩的特性,也結合觀察到的陽極氧化成長速率和布拉格繞射公式,驗證了陽極氧化鋁的著色原理,我們進一步推導出厚度與時間的關係,可應用於製備紫、藍、綠、黃、橘等不同色彩的陽極氧化鋁結構。並且成功地在商用鋁合金上實現了多種色彩在CIE1931色度圖中進行驗證,其中包括色彩分佈、色彩循環速率、個別顏色飽和度。同時,使用MDM結構開創出更多色彩可能性,搭配不同鍍層金屬和鍍層厚度,增強其顏色飽和度以及創造更多色調,這有助於未來在陽極氧化鋁圖案設計中選擇不同的顏色和圖案,並應用於不同的鋁金屬基材上。
This study aims to utilize the Hybrid Pulse Anodization (HPA) process technique to prepare nano-porous anodic aluminum oxide (AAO) templates on a commercial aluminum alloy substrate AA5052, by anodizing it with 0.3M concentration of oxalic acid at room temperature. Different voltage parameters and anodization times were adjusted to regulate the formation of the AAO templates. Additionally, various types and thicknesses of metals were deposited on the surface using sputtering techniques to enhance the saturation of structural colors and investigate the effects of the Metal-Dielectric-Metal (MDM) structure and thin film interference mechanism on structural colors and reflection spectra. The study also observed the growth rate and morphology of anodic oxide and examined the influence of different experimental parameters on the structural colors of anodic aluminum oxide.
Optical measurement techniques were employed to establish the relationship between anodization time and spectral wavelength in the visible light range (350~800 nm) to obtain the characteristics of the structural colors of anodic aluminum oxide. The coloring principle of anodic aluminum oxide was validated by combining the observed growth rate of anodic oxide and the Bragg diffraction formula. Furthermore, a relationship between thickness and time was derived, which can be applied to prepare anodic aluminum oxide structures with different colors, such as purple, blue, green, yellow, orange, etc. Multiple colors were successfully achieved on the commercial aluminum alloy and verified on the CIE1931 chromaticity diagram, including color distribution, color cycle rate, and individual color saturation. The use of the MDM structure, along with different metal coatings and coating thicknesses, expanded the possibilities for colors, enhancing color saturation and creating a wider range of hues. This opens up opportunities for selecting different colors and patterns in anodic aluminum oxide pattern design and applying them to various aluminum metal substrates in the future.
[1]S. Kinoshita, S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” Chemphyschem vol. 6, pp. 1442-1459, 2005.
[2]W. Lee, and S. J. Park, “Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures,”Chemical Reviews, vol. 114, pp. 7487−7556, 2014.
[3]P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
[4]K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, U. Gosele, “Self-ordering regimes of porous alumina: the 10% porosity rule,” Nano Letters, vol. 2, pp. 677-680, 2002.
[5]R. C. Furneaux, W. R. Rigby, A. P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminium,” Nature, vol. 337, pp. 147-149, 1989.
[6]L. Woo, K. J. Cheon, “Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization,” Nanotechnology, vol. 21, No. 485304, 2010.
[7]Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, X. H. He, “Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization,” Chemical Communications, vol. 46, pp. 309-311, 2010.
[8]Y. Liu, Y. Chang, Z. Ling, X. Hu, Y. Li, “Structural coloring of aluminum,” Electrochemistry Communications, vol. 13, pp. 1336-1339, 2011.
[9]G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J.P. Celisd, “Synthesis of well-ordered nanopores by anodising aluminium foils in sulphuric acid,” Journal of The Electrochemical Society, vol. 149, pp. D97–D103, 2002.
[10]G. D. Sulka, M. Jaskuła, “Defect analysis in self-ordered nanopore structures grown by anodization of aluminium at various temperatures,” Journal of nanoscience and nanotechnology, vol. 6, pp. 3803–3811, 2006.
[11]G. D. Sulka, W. J. Stępniowski, “Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures,” Electrochimica Acta, vol. 54, pp. 3683–3691, 2009.
[12]L. Zaraska, W. J. Stępniowski, E. Ciepiela, G.D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films, vol. 534, pp.155–161, 2013.
[13]L. Zaraska, W. J. Stępniowski, G. D. Sulka, E. Ciepiela, M. Jaskuła, “Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software,” Applied Physics A, vol. 114, pp. 571–577, 2014.
[14]L. Zaraska, G. D. Sulka, M. Jaskuła, “Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials,” Journal of Physics: Conference Series, vol. 146, pp. 012020, 2009.
[15]C. K. Chung, R. X. Zhou, T. Y. Liu, & W. T. Chang, "Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature, " Nanotechnology, vol. 20, pp. 055301, 2009.
[16]C. K. Chung, W. T. Chang, M. W. Liao, H. C. Chang, & C. T. Lee, "Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling, " Electrochimica Acta, vol. 56, pp. 6489-6497, 2011.
[17]C. K. Chung, W. T. Chang, M. W. Liao, & H. C. Chang, "Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature, " Thin Solid Films, vol. 519, pp. 4754-4758, 2011.
[18]H. Buff, “Ueber das electrische Verhalten des Aluminiums,” Annalen Der Chemie Und Pharmacie, vol. 3, pp. 265-284, 1857.
[19]G. D. Bengough, and J. M. Stuart, “Improved process of protecting surfaces of aluminium of aluminium alloys,” U.K. Patent No. 223994, 1923.
[20]A. R. Despić, “A note on the effect of the electrolyte on the type of growth of anodic oxide on aluminium,” Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 191, pp. 417-423, 1985.
[21]J. W. Diggle,T. C. Downie, & C. W. Goulding, “Anodic oxide films on aluminum,” Chemical Reviews, vol. 69, pp. 365-405, 1969.
[22]F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of The Electrochemical Society, vol. 100, pp. 411-419, 1953.
[23]S. Ono, M. Saito, H. Asoh, “Self-ordering of anodic porous alumina formed in organic acid electrolytes,” Electrochimica Acta, vol. 51, pp. 827-833, 2005.
[24]W. Lee, and S.J. Park, “Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures,”Chemical Reviews, vol. 114, pp. 7487−7556, 2014.
[25]E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov, T. A. Suchkova, D. I. Petukhov, T. B. Shatalova, & K. S. Napolskii, “Formation Efficiency of Porous Oxide Films in Aluminum Anodizing,” Russian Journal of Electrochemistry, vol. 54, pp. 990-998, 2018.
[26]Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin solid films, vol. 297, pp. 192-201, 1997.
[27]F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials, vol. 10, pp. 2470-2480, 1998.
[28]S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, vol. 12, pp. 240-251, Mar 2002.
[29]O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied physics letters, vol. 72, pp. 1173-1175, 1998.
[30]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, Dec 1 1998.
[31]I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, G. Marx, “The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime,” Applied Surface Science, vol. 222, pp. 215-225, 2004.
[32]V. Parkhutik, V. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Journal of Physics D: Applied Physics, vol. 25, pp. 1258-1266, 1992.
[33]H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” science, vol. 268, p. 1466, 1995.
[34]H. Masuda and K. Fukuda, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, 1996.
[35]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp. 2770-2772, 1997.
[36]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Advanced Materials, vol. 13, pp. 189-192, 2001.
[37]H. Masuda, K. Kanezawa, and K. Nishio, “Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope,” Chemistry Letters, pp. 1218-1219, 2002.
[38]M. Jaafar, D. Navas, M. Hernández-Vélez, J. L. Baldonedo, M. Vázquez, and A. Asenjo, “Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation,” Surface Science, vol. 603, pp. 3155-3159, 2009.
[39]C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, vol. 78, p. 120, 2001.
[40]B. Chen and K. Lu, “Moiré Pattern Nanopore and Nanorod Arrays by Focused Ion Beam Guided Anodization and Nanoimprint Molding,” Langmuir, vol. 27, pp. 4117-4125, 2011.
[41]S.H. Chen, D.S. Chan, C.K. Chen, T.H. Chang, Y.H. Lai, and C.C. Lee, “Nanoimprinting Pre-Patterned Effects on Anodic Aluminum Oxide,” Japanese Journal of Applied Physics, vol. 49, p. 015201, 2010.
[42]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Advanced Materials, vol. 13, pp. 189-192, 2001.
[43]J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. r. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” Journal of Applied Physics, vol. 94, pp. 4757, 2003.
[44]G. J. Alves, T.,S. Antunes, M. Gallina, & P. R. P. Rodrigues, “Influence of pulse currents on the nanostructure and color absorption ability of colored anodized aluminum,” Trans Tech Publications, vol. 99, pp. 277-283, 2014.
[45]C.C. Chang, F.C. Chiang, S.M. Chen, K. Thangavelu, and H.J. Yang, “Studies on electrochemical oxidation of aluminum and dyeing in various additives towards industrial applications,” Int. J. Electrochem. Sci, vol. 11, pp. 2142-2152, 2016.
[46]Y. Zuo, P.-H. Zhao, and J.-M. Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions,” Surface and Coatings Technology, vol. 166, pp. 237-242, 2003.
[47]V. Lopez, M. Bartolomé, E. Escudero, E. Otero, and J. González, “Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxides,” Journal of the Electrochemical Society, vol. 153, pp. B75-B82, 2006.
[48]C. J. Donahue and J. A. Exline, “Anodizing and Coloring Aluminum Alloys,” Journal of Chemical Education, vol. 91, pp. 711-715, 2014.
[49]G. E. Thompson, & G. C. Wood, “Porous anodic film formation on aluminium,” Nature, vol. 290, pp. 230-232, 1981.
[50]K. Maeda, K. Ichinose, T. Yamazaki, T. Suzuki, “Preparation of mesostructured silica/anodic alumina composite membranes in mild conditions using acetic acid,” Microporous and Mesoporous Materials, vol. 112, pp. 603-611, 2008.
[51]M. Norek, M. Wlodarski, “Morphological and chemical characterization of highly ordered conical-pore anodic alumina prepared by multistep citric acid anodizing and chemical etching process,” Journal of Porous Materials, vol. 25, pp. 45-53, 2018.
[52]W. Lee, K. Nielsch, U. Gosele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology, vol. 18, No. 475713, 2007.
[53]S. Liu, S. G. Tang, H. H. Zhou, C. P. Fu, Z. Y. Huang, H. Y. Liu, Y. F. Kuang, “Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters,” Journal of Solid State Electrochemistry, vol. 17, pp. 1931-1938, 2013.
[54]S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” Journal of The Electrochemical Society, vol. 153, pp. B384-B391, 2006.
[55]X. Chen, D. Yu, L. Cao, X. Zhu, Ye Song, H. Huang, L. Lu, X. Chen, “Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages,” Materials Research Bulletin, vol.57, pp. 116–120, 2014.
[56]T. Kikuchi, T. Yamamoto, R.O. Suzuki, “Growth behavior of anodic porous alumina formed in malic acid solution,” Applied surface science, vol. 284, pp. 907–913, 2013.
[57]T. Kikuchi, O. Nishinaga, S. Natsui, “Fabrication of anodic nanoporous alumina via acetylenedicarboxylic acid anodizing,” ECS Electrochemistry Letters, vol.7, pp. C25–C28,2014
[58]Y. Li, C. W. Wang, L. R. Zhao, and W. M. Liu, “Photoluminescence properties of porous anodic aluminium oxide membranes formed in mixture of sulfuric and oxalic acid,” Journal of Physics D-Applied Physics, vol. 42, pp. 5, 2009.
[59]G. G. Khan, A. K.Singh, K. Mandal, “Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects”, Journal of Luminescence, vol. 134, pp. 772-777, 2007.
[60]G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, and G. G. Siu, “Strong blue emission from anodic alumina membranes with ordered nanopore array,” Journal of Applied Physics, vol. 93, pp. 582-585, 2003.
[61]A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, vol. 319, pp. 192-198, 2008.
[62]S.Shingubara, K. Morimoto, H. Sakaue, and T. Takahagi, “Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte,” Electrochemical and Solid-State Letters, vol. 7 , pp. E15-E17, 2004
[63]H. Masuda, F. Hasegawa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,” Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
[64]H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Japanese Journal of Applied Physics, vol. 37, pp. L1340-L1342, 1998.
[65]L. B. Edith, A. Donony, P. Csokfáah, “Untersuchung der Struktur und anderer Eigenschaften von durch anodische Oxydation auf Aluminium erzeugten Hartoxydschichten,” Materials and Corrosion, vol. 11, pp. 701-707, 1960.
[66]S. V. Gils, P. Mast, E. Stijns, H. Terryn, “Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry,” Surface & Coatings Technology, vol. 185, pp. 303-310, 2004.
[67]W. Lee, R. Ji, U. Goesele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nature Materials, vol. 5, pp. 741-747, 2006.
[68]S. Z. Chu, K. Wada, S. Inoue, M. Isogai, & A. Yasumori “Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high‐field anodization,” Advanced materials, vol. 17, pp. 2115-2119, 2005.
[69]Y. B. Li, M.J. Zheng, L. Ma, & W.Z. Shen, “Fabrication of highly ordered nanoporous alumina films by stable high-field anodization,” Nanotechnology, vol.17, pp. 5101-5105,2006
[70]T. Kikuchi, O. Nishinaga, S. Natsui, R.O. Suzuki, "Fabrication of Self-Ordered Porous Alumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-Scale Dimple Array," Electrochimica Acta, 156 235–243, 2015.
[71]K. Ebihara, H. Takahashi, and M. Nagayama, "Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions," J. Met. Finish. Soc. Jpn, vol. 34, pp. 548-553, 1983.
[72]Y. Xu, G. E. Thompson, G. C. Wood, “Mechanism of anodic film growth on aluminium.” Transactions of the Institute of Metal Finishing, vol. 63, pp. 98-103, 1986.
[73]J. O'sullivan and G. Wood, "The morphology and mechanism of formation of porous anodic films on aluminium," in Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, pp. 511-543, 1970.
[74]W. J. Stępniowski, & Z. Bojar, “Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features,” Surface and Coatings technology, vol. 206(2-3), pp. 265-272, 2011.
[75]C. K. Chung, D. Dhandapani, C. J. Syu, M. W. Liao, B. Y. Chu, E. H. Kuo, “Role of Oxalate Anions on the Evolution of Widened Pore Diameter and Characteristics of Room-Temperature Anodic Aluminum Oxide,” Journal of The Electrochemical Society, vol. 166, pp. 121-127, 2019.
[76]Z. He, L. Yao, M. Zheng, L. Ma, S. He, W. Shen, “Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall,” Physica E: Low-dimensional Systems and Nanostructures, vol. 43, pp. 366-371, 2010.
[77]T. Nagaura, F. Takeuchi, S. Inoue, "Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing, "Electrochimica Acta 53 2109–2114, 2008.
[78]Y. Zhang, S.J. Son, H. Ju, "Anodized aluminum oxide membranes of tunable porosity with platinum nanoscale-coating for photonic application, "Current Applied Physics 12 1561e1565, 2012.
[79]L. Zaraska, G.D. Sulka, J. Szeremeta, and M. Jaskuła, “Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum,” Electrochimica Acta, vol. 55, pp. 4377-4386, 2010.
[80]A. R. Parker, "515 million years of structural colour," Journal of Optics A: Pure and Applied Optics, vol. 2, p. R15, 2000.
[81]M. Sarrazin, J. P. Vigneron, V. Welch, and M. Rassart, "Nanomorphology of the blue iridescent wings of a giant tropical wasp Megascolia procer javanensis (Hymenoptera)," Physical Review E, vol. 78, p. 051902, 2008.
[82]J. Sun, B. Bhushan and J. Tong, "Structural coloration in nature," RSC Adv., 3, 14862–14889, 2013.
[83]Y. Liu, Y. Chang, Z. Ling, X. Hu, & Y. Li, “Structural coloring of aluminum,” Electrochemistry communications, vol. 13(12), pp. 1336-1339. 2011.
[84]X. D. Shi, J. L. He, X. H. Xie, R. M. Dou, X. H. Lu, “Photonic crystals with vivid structure color and robust mechanical strength,” Dyes and Pigments 165, 137-143, 2019.
[85]S. L. Wu, T. F. Liu, B. T. Tang, L. Li, S. F. Zhang, “Structural Color Circulation in a Bilayer Photonic Crystal by Increasing the Incident Angle,” ACS Applied Materials & Interfaces 11, 10171-10177, 2019.
[86]J. Cui, X. C. Cui, H. Xu, Y. Liu, J. Zheng, Z. C. Ye, “Polarized structure color from thin dielectric gratings on a metal film,” Applied Optics, vol. 54, 3868-3872, 2015.
[87]H. Du, T. Yin, W. S. Yip, Z. Zhu, & S. To, “Generation of structural colors on pure magnesium surface using the vibration-assisted diamond cutting,” Materials Letters, vol. 299, 130041, 2021.
[88]M. Seo, J. Kim, H. Oh, M. Kim, I. U. Baek, K. D. Choi, J. Y. Byun, M. Lee, “Printing of Highly Vivid Structural Colors on Metal Substrates with a Metal-Dielectric Double Layer,” Advanced Optical Materials 7, No. 1900196, 2019.
[89]S. Banisadr, A. Oyefusi, J. Chen, “A Versatile Strategy for Transparent Stimuli-Responsive Interference Coloration,” ACS Applied Materials & Interfaces 11, 7415-7422, 2019.
[90]W. Yue, Y. Li, C. Wang, Z. Yao, S. S. Lee, N. Y. Kim, “Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation,” Optics Express, vol. 23, pp. 27474-27483, 2015.
[91]S. Y. Zhang, Q. Xu, Z. J. Wang, S. Z. Hao, C. X. Sun, W. J. Ma, “Preparation and characterization of anodic alumina films with high-saturation structural colors in a mixed organic electrolyte,” Surface and coating technology, vol. 346, pp. 48-52, 2018.
[92]F. E. T. Heakal, O. S. Shehata, & A. M. Awad, “Relevant aspects in the stability performance of different anodic alumina (AAO) films in aqueous sulfate solutions,” Journal of Electroanalytical Chemistry, vol. 792, pp. 95-103, 2017.
[93]Awad, A. M., Shehata, O. S., & Heakal, F. E. T. (2015). Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution. Applied Surface Science, 359, 939-947.
[94]Cathcart, N., & Kitaev, V. (2016). Symmetry breaking by surface blocking: synthesis of bimorphic silver nanoparticles, nanoscale fishes and apples. Scientific reports, 6(1), 1-10.
[95]J. Cui, X. C. Cui, H. Xu, Y. Liu, J. Zheng, & Z. C. Ye, “Polarized structure color from thin dielectric gratings on a metal film,” Applied Optics, vol. 54, pp. 3868-3872, 2015.
[96]Y. Liu, Y. Chang, Z. Ling, X. Hu, & Y. Li, “Structural coloring of aluminum. Electrochemistry communications,” vol. 13, pp. 1336-1339, 2011.
[97]Z. Q. Li, H. Y. Wei, D. C. Chen, M. L. Chang, H. W. Hu, X. F. Ye, Y. Y. Zhang, W. Wen, & M. F. Wang, “Optical Properties of Muticolor, Hierarchical Nanocomposite Films Base on Anodized Aluminum Oxide,” Optical Materical, vol. 111, 110557, 2021.
[98]C. V. Manzano, D. Ramos, L. Pethö, G. Bürki, J. Michler, & L. Philippe “Controlling the Color and Effective Refractive Index of Metal-Anodic Aluminum Oxide (AAO)−Al Nanostructures: Morphology of AAO” THE Journal of Physical Chemistry C ,122, 957–963,2018.
[99]S. Y. Zhang, Q. Xu, Z. J. Wang, Y. X. Ren, R. J. Yan, W. J. Ma, & J. L. Zhu,“The effect of propylene glycol on the optical properties of iridescent porous anodic alumina films,” Journal of Porous Materials, vol. 25, pp.1213-1217, 2018.
[100]X. Zhu, C.Zhao, W. Zhang, B. Zhang, M. Sun, X. Chen, & Y. Song, “Structural Color Control of CoFeB-Coated Nanoporous Thin Films”. Coatings, vol. 11(9), 1123, 2021.
[101]Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, & Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Applied Surface Science, vol. 258, pp. 1826-1830, 2011.
[102]S. Van Gils, P. Mast, E. Stijns, and H. Terryn, "Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry," Surface and Coatings Technology, vol. 185, pp. 303-310, 2004.
[103]X. L. Zhao, G. W. Meng, Q. L. XU, F. M. Han, & Q. Huang, "Color Fine-Tuning of CNTs@AAO Composite Thin Films via Isotropically Etching Porous AAO Before CNT Growth and Color Modification by Water Infusion," Advanced Matericals, vol22(24) , pp.2637-2641, 2010.
校內:不公開