| 研究生: |
張弘儒 Chang, Hung-Ju |
|---|---|
| 論文名稱: |
以壓電式噴墨製程製備金屬微接點及導線之研究 Fabrication of Metallic Micro-joint and Micro-conductive Line by Piezoelectric Ink-jet Printing Method |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 噴印技術 、電腦模擬 、精微結構 、導線 |
| 外文關鍵詞: | Ink-jet printing process, Simulation, Micro-joint, Micro-conductive line |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用噴印技術製造精微結構可以降低成本減少汙染,是一個極具吸引力的技術。不過噴印的品質受很多因素影響,為了得到好的精微結構,如何得到好的液滴行為是很重要的事情,本研究針對高溫跟常溫的噴墨進行研究,探討噴印的參數對其精微結構品質的影響。
在高溫壓電噴墨的實驗部分,選取熔融無鉛銲錫Sn-Ag-Cu為墨水,改變不同的tfall時間得到不同的液滴型態,在模擬方面主要是改變噴墨頭邊界的壓力波,得到不同的壓力波型態,藉由模擬結果與實驗結果的比較來說明tfall時間對最後噴墨管內的壓力波所造成的影響。另外使用商業軟體Flow-3D來模擬銲錫液滴撞擊凝固的情形,並採用多顆液滴的模擬去得到熔融銲錫在不同液滴間距及噴覆頻率的導線品質。
常溫噴墨部分則是先選取奈米銀懸浮溶液以及硝酸銀水溶液,以這兩種水系材料為本研究的墨水。以不同的液滴間距及基板溫度為實驗條件去進行實驗,從所噴印的點陣列及導線結果來比較這兩種墨水的優劣,並且找到最適合噴印的參數。接著選用不同濃度的硝酸銀水溶液進行實驗,比較不同濃度墨水的噴印結果,找出濃度5M的硝酸銀水溶液是最適合應用在常溫噴墨製程,並藉由觀察不同濃度硝酸銀水溶液的乾燥行為,找出硝酸銀水溶液的乾燥機制。
Piezoelectric inkjet printing technology is a great manufacturing technology to produce micro-joint and micro-conductive line for the need of reduction of costs and environmental impact. The droplet behavior would effects the quality of the micro-joint and micro-conductive line. High temperature inkjet printing and low temperature inkjet printing were applied in this study for the quality of micro-joint and micro-conductive line during different inkjet factors.
Micro droplets of molten lead-free solder were ejected at 230oC using a piezoelectric inkjet printing process. The effect of the micro droplet formation of molten lead-free solder was investigated on the pulse time of the waveform. In this study, a computer-aided analytical system for simulating the shape evolution of micro droplet of molten lead-free solder in the inkjet printing process was developed based on computational fluid dynamics techniques. The simulation results were validated with experimental observations. The numerical results were used to understand the mechanisms of the extrusion of the liquid column, the contraction of the liquid thread, and the pinch-off of the liquid thread at the nozzle exit. A commercial software Flow-3D was adopted to simulate the fluid dynamics and thermal transients of molten solders after deposited on the substrate in order to predict the morphology and line width of micro-conductive line during different step sizes or deposition frequencies .
Two silver containing solutions were employed in this study for the fabrication of conductive patterns using inkjet printing. Line patterns with various droplet interspaces sizes of 10, 20, 30, and 40 μm were printed and evaluated. Moreover, the morphologies of line patterns were also investigated under different substrate temperatures of 25, 50, and 90℃ in this study. Aqueous silver nitrate inks of 1, 5, and 10 molarity (M) were employed in a piezoelectric inkjet printing apparatus. The actual printing qualities of array and line patterns are then analyzed by variation of dot interval and substrate temperature. Unsteady spreading features of printed array and line patterns on hydrophilic glass are found to be due to silver nitrate crystal during droplet drying, which is dominated by solute concentration and substrate temperature. The characteristics of drying progress for silver nitrate solutions were investigated after measuring contact angle on the prepared glass substrates. Due to the crystallization of silver nitrate, the decrease of local surface tension was induced with decreasing solute concentration.
1. J.U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira and J. A. Rogers, “High-Resolution Electrohydrodynamic Jet Printing”, Nature Materials, No. 6, 2007, pp. 782-789
2. R. Parashkov, E. Becker, T. Riedl, H. H. Johannes and W. Kowalsky, “Large Area Electronics Using Printing Methods”, Process of the IEEE, No. 93, 2005, pp. 1321-1329
3. J. Heinzl, C. H. Hertz, “Ink-Jet Printing “, Advance in Electronics and Electron Physics, Vol. 65, 1985, pp. 91-171
4. L. P. Hue, “Progress and Trends in Ink-Jet Printing Technology”, Journal of Imaging Science and Technology, Vol. 42, No. 1, 1998, pp. 49-62
5. 殷孟雲, “噴墨印表機設計原理” , 全華科技圖書股份有限公司, 2001.
6. E. R. Lee, “Microdrop Generation”, New York: CRC, 2003, pp. 59-67
7. M. D. Croucher, M. L. Hair, “Design Criteria and Future Directions in Inkjet Ink Technology”, Industrial &Engineering Chemistry Research, No. 28, 1989, pp. 1712-1718
8. F. Xue, Z. Liu, Y. Su, K. Varahramyan, “Inkjet Printed Silver Source/drainelectrodes for Low-cost Polymer Thin Film Transistors”, Microelectronic Engineering, No. 83, 2006, pp. 298-302
9. Z. Liu, Y. Su, K. Varahramyan,, “Inkjet-printed Silver Conductors Using Silver Nitrate Ink and Their Electrical Contacts with Conducting Polymers”, Thin Solid Films, No. 478, 2005, pp.275-279
10. C. M. Hong, S. Wagner, “Inkjet Printed Copper Source/drain Metallization for Amorphous Silicon Thin-film Transistors”, IEEE Electron Device Letters, No.21, 2000, pp. 384-386
11. S. K. Kang, P. Lauro, D. Y. Shih, “Microstructure and Mechanical Properties of Lead-Free Solders and Solder Joints Used in Microelectronic Applications”, IBM Journal of Research and Development, No. 49, 2005, pp. 607-620
12. J. S. Hwang, “Implementing Lead-Free Electronics”, New York: McGraw-Hill, 2004, pp. 69
13. L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid under Capillary Force”, Philosophical Magazine, Vol. 34, 1892, pp. 145
14. W. T. Pimbley, H. C. Lee, “Satellite Droplet Formation in a Liquid Jet”, IBM Journal of research and Development, Vol. 20, 1976, pp. 258-270
15. D. B. Bogy, S. J. Shine, F. E. Talke, “Finite Difference Solution of the Cosserat Fluid Jet Equations”, Journal of Computational Physics, Vol. 38, 1980, pp. 294-326
16. D. B. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Inkjet Devices”, IBM Journal of research and Development, Vol.28, NO.3, 1984, pp. 314-321
17. D. Attinger, Z. Zhao, D. Poulikakos, ”An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics”, Journal of Heat Transfer, Vol. 122, 2000, pp. 544-556
18. S. Haferl, D. Poulikakos, “Experimental Investigation of the Transient Impact Fluid Dynamics and Solidification of a Molten Microdroplet Pile-up”, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 535-550
19. M. Fang, S. Chandra, C. B. Park, “Experiments on Remelting and Solidification of Molten Metal Droplets Deposited in Vertical Columns”, Journal of Manufacturing Science and Engineering, Vol. 129, 2007, pp. 311-318
20. J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets”, IBM Journal of research and Development, Vol. 28, 1984, pp. 323-333
21. N. Hatta, J. Fujimoto, H. Takuda, “Deformation Process of a Water Droplet Impinging in a Solid Surface”, Transactions of the ASEM Journal of Fluids Engineering, Vol. 117, 1995, pp. 394-401
22. T. M. Liou, K. C. Shih, S. W. Chau, S. C. Chen, “Three Dimensional Simulations of the Droplet Formation during the Inkjet Printing Process”, International Communications in Heat and Mass Transfer, Vol. 29, No. 8, 2002, pp. 1109-1118
23. H. C. Wu, H. J. Lin, Y.C. Kuo, W. S. Hwang, “Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device”, Materials Transaction, Vol.45, No. 3, 2004, pp. 893-899
24. H. Wijshoff, “The Dynamics of the Piezo Inkjet Printhead Operation”, Physics Reports, Vol. 491, 2010, pp. 77-177
25. C. W. Hirt, B. D. Nichols, R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries”, Technology Report LA-8355, Los Alamos Scientific Laboratory, 1980.
26. C. W. Hirt, B. D. Nichols, ”Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, Journal of Computational Physics, No. 39, 1981, pp. 201-225.
27. A. Celic, G. G. Zilliac, “Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer”, NASA Ames Research Center, USA, August 1997.
28. D. L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion”, in Numerical Methods for Fluid Dynamics, edited by K. W. Morton and M. J. Baines, Academic Press, 1982, pp. 273-285.
29. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows”, Journal of Computational Physics, Vol. 152, 1999, pp. 423-456.
30. R. Scardovelli, S. Zaleski, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids”, Journal of Computational Physics, Vol. 164, 2000, pp. 228-237.
31. W. J. Rider, D. B. Kothe, “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, 1998, pp. 112-152.
32. J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics, Vol. 100, 1992, pp. 335-354.
33. D. B. Kothe, R. C. Mjolsness, M. D. Torrey, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces”, LA-12007-MS, April 1994.
34. C. W. Hirt, J. P. Shannon, ”Free-Surface Stress Conditions for Incompressible-Flow Calculations”, Journal of Computational Physics, Vol. 2, 1968, pp. 403-411.
35. S. Chen, D. B. Johnson, P. E. Raad, “Velocity Boundary Conditions for the Simulation of Free Surface Fluid Flow”, Journal of Computational Physics, Vol. 116, 1995, pp. 262-276.
36. 吳鉉忠, “壓電式微液滴噴射數學模擬系統之開發與實驗研究”, 國立成功大學材料科學及工程學系博士論文, 2004.
37. C. W. Hirt, B. D. Nichols, N. C. Romero, “SOLA—A Numerical Transient Solution Algorithm for Fluid Flows”, Technical Report LA-5852, Los Alamos Scientific Laboratory, 1975.
38. T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, J. K. Kivilahti, “Evolution of Microstructure and Failure Mechanism of Lead-Free Solder Interconnections in Power Cycling and Thermal Shock Tests”, Microelectronics Reliability, No. 47, 2007, pp. 1135-1144
39. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-cost Electronic Assembly: A Review”, Journal of Electronic Materials, NO. 23, 1994, PP. 693-700.
40. V. H. Stott, “The Measurement of the Viscosity of A Molten Metal By Means of An Oscillating Disc”, Proceedings of the Physical Society, No. 45, 1933, pp. 530-544.
41. D. W. Tian, C. Q. Wang, Y. H. Tian, “Effect of Solidificaation on Solder Bump Formation in Solder Jet Process: Simulation and Experiment”, Transactions of Nonferrous Metals Society of China, No. 18, 2008, pp. 1201-1208.
42. 蔡銘修, “壓電噴墨技術之微液滴行為及噴印品質研究”, 國立成功大學材料科學及工程學系博士論文, 2010.
43. P. C. Duineveld, “The Stability of Ink-jet Printed Lines of Liquid with Zero Receding Contact Angle on a Homogeneous Substrate”, Journal of Fluid Mechanics, Vol. 477, 2003, pp. 175-200
44. P. J. Smith, D. Y. Shin, J. E. Stringer, B. Derby, N. Reis, “Direct Ink-jet Printing and Low Temperature Conversion of Conductive Silver Patterns”, The Journal of Materials Science, Vol. 41, 2006, pp. 4153
45. S. H. Lee, K. Y. Shin, J. Y. Hwang, K. T. Kang, H. S. Kang, “Silver Inkjet Printing with Control of Surface Energy and Substrate Temperature”, Journal of Micromechanics and Microengineering, No. 7, Vol. 18, 2008, pp. 075014
46. R. D. Deegan, “Pattern formation in drying drops”, Physical Review E, Vol. 61, 2000, pp. 475-485.
47. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, “Contact line deposits in an evaporating drop”, Physical Review E, Vol. 62, 2000, pp. 756-765.
48. N. Shahidzadeh-Bonn, D. Bonn, G. Wegdam “Salt Crystallization during Evaporation: Impact of Interfacial Properties”, Vol. 24, 2008, pp. 8599–8605