簡易檢索 / 詳目顯示

研究生: 張勝智
Chang, Sheng-Chih
論文名稱: 動樑式蓄熱式加熱爐之熱傳分析
Heat Transfer Analysis in a Walking-Beam type Reheating Furnace with Regenerative Burners
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 加熱爐燃燒輻射熱傳蓄熱式燃燒器
外文關鍵詞: Furnace, Combustion, Radiation heat transfer, Regenerative burners
相關次數: 點閱:87下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在軋延製程前,鋼胚必須再進行加熱,使其溫度上升至約1500 K左右,以便達到塑性變形之程度,而在加熱過程中,鋼胚溫度分佈將影響鋼材機械性質與表面品質,且鋼胚整體溫度分佈若不均勻會影響到軋延製程的順暢性及厚度均勻狀況,故國內鋼鐵廠中加熱爐之溫控技術為鋼材品質關鍵技術之一。
    故本研究分別針對加熱爐內所使用之燃燒器型式進行研究分析,使用傳統式燃燒器之加熱爐是利用煙道出口處之復熱器進行廢熱回收,將進口空氣預熱,則空氣溫度為定值;而使用蓄熱式燃燒器之加熱爐是利用燃燒器前段之蓄熱器進行廢熱回收,將進口空氣預熱,則空氣溫度為爐溫之函數,故蓄熱式燃燒器相較於傳統式燃燒器可提高預熱空氣之效果,降低加熱爐使用之燃料量,以提高加熱爐能源使用效率。並利用數值分析探討蓄熱式加熱爐之熱流場分析,其中使用蓄熱式燃燒器進行廢熱回收,提高進口空氣溫度,且因加熱爐內之隔板,可使加熱爐內爐溫更加均勻,因而影響鋼胚溫度分佈之均勻性,並將其數值分析之模擬值與現場實測值進行合理性比較,並探討其鋼胚冷痕現象。此外,探討在已知鋼胚升溫曲線下,反求加熱爐在使用不同熱效率之蓄熱式燃燒器下,各爐區之燃料配比與質量流率。
    最後建立一套探討蓄熱式燃燒器熱效率分析之電腦輔助設計軟體,為了瞭解加熱爐所使用的蓄熱式燃燒器之蓄熱器廢熱回收系統熱效率分析,利用數值方法 - NTU法,提供鋼廠工程師快速得到蓄熱式燃燒器性能評估(rating)分析,而此性能評估包括分別對廢氣與空氣之出口溫度與壓降進行分析,並探討蓄熱式燃燒器之熱效率。

    Three-dimensional simplified simulation model investigate the furnace thermal efficiency for a walking-beam type slab heating furnace with regenerative burners. The walking-beam type heating furnace is composed of five zones, namely, flameless, preheating, first heating, second heating and soaking zones with regenerator efficiency 90 %. The furnace uses a mixture of coke oven gas as a fuel to reheat the slabs. The numerical model considers turbulent combustion reactive flow coupled with radiative heat transfer in the furnace. It is shown that with regenerator burners, the furnace thermal efficiency is 72%, which is significantly higher than that of a furnace using the conventional burner without regenerator. Comparison with the in-situ experimental data from steel company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace with regenerator burners. The numerical predictions of the slab temperature and flue gas temperature deviations with the in-situ data are about 4% and 7%, respectively. In addition, when the slab heating curve is given, estimating the fuel mass flow rate at each zone of the reheating furnace with regenerator efficiency 90 % and 70%, respectively. Compared with the reheating furnace with regenerator efficiency 70%, the quantity of fuel reduction rate is up to 10% when the reheating furnace with regenerator efficiency 90%. Finally, development of thermal efficiency analysis in regenerative burners of a computer-aided design software. Using effectiveness-NTU method, providing engineers to quickly obtain performance analysis in regenerative burners.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 符號說明 XX 第一章 緒論 1 1.1 前言與研究動機 1 1.2 文獻回顧與探討 3 1.3 研究目的 7 第二章 理論分析 17 2.1 中鋼之蓄熱式加熱爐與加熱爐物理模型 17 2.2 統御方程式 18 2.3 初始條件與邊界條件 25 2.4 鋼胚熱物理性質 27 第三章 數值分析 35 3.1 網格測試 35 3.2 數值方法 36 3.3 解題流程 37 3.4 收斂準則 38 3.5 副程式UDF (User-Defined Functions) 38 3.6 求解燃料質量流率之方法 39 第四章 結果與討論 48 4.1 三維蓄熱式加熱爐之熱流場分析與鋼胚溫度之均勻性 48 4.2 已知鋼胚升溫曲線反求蓄熱式燃燒器之燃料量 52 第五章 蓄熱式燃燒器電腦輔助設計軟體 75 5.1 程式計算之理論分析 75 5.2 交談式介面 78 第六章 結論 85 參考文獻 87 附錄A 副程式UDF(User-Define Function) 91 附錄B 鋼胚熱物理性質 96 附錄C 蓄熱球熱物理性質 99

    [1] D. Lindholm, and B. Leden, “A finite element method for solution of the three-dimensional time-dependent heat-conduction equation with application for heating of steels in reheating furnaces,” Numerical Heat Transfer, Part A, Vol. 35, pp. 155-172, 1999.
    [2] J. G. Kim, and K. Y. Huh, “Three-dimensional analysis of the walking-beam-type slab reheating furnace in hot strip mills,” Numerical Heat Transfer, Part A, Vol, 38, pp. 589-609, 2000.
    [3] W. H. Chen, Y. C. Chung, and J. L. Liu, “Analysis on energy consumption and performance of reheating furnaces in a hot strip mill,” International communications in heat and mass transfer, Vol. 32, pp. 695-706, 2005.
    [4] J. P. Ou, A. C. Ma, S. H. Zhan, J. M. Zhou, and Z. Q. Xiao, “Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace,” J. Cent. South Univ. Technol., 2007.
    [5] C. T. Hsieh, M. J. Huang, S. T. Lee, and C. H. Wang, “Numerical Modeling of a Walking-Beam-Type Slab Reheating Furnace,” Numerical Heat Transfer, Part A, Application, Vol. 53, Issue 9, pp. 966-981, 2008.
    [6] M. J. Huang, C. T. Hsieh, S. T. Lee, and C. H. Wang, “A Couple Numerical Study of Slab Temperature and Gas Temperature in the Walking-Beam Type Slab Reheating Furnace” Numerical Heat Transfer, Part A, Application, Vol. 54, Issue 6, pp. 626-646, 2008.
    [7] S. H. Han, S. W. Baek, and M. Y. Kim, “Transient radiative heating characteristics of slabs in walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 1005-1011, 2008.
    [8] S. H. Han, D. Chang, and C. Y. Kim, “A numerical analysis of slab heating characteristics in a walking beam type reheating furnace,” International Journal of Heat and Mass Transfer, Vol. 53, Issue 19-20, pp. 3855-3861, 2010.
    [9] S. H. Han, D. Chang, and C. Huh, “Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace,” Energy, Vol. 36, Issue 2, pp. 1265-1272, 2011.
    [10] S. H. Han, and D. Chang, “Radiative slab heating analysis for various fuel gas compositions in an axial-fired reheating furnace,” International Journal of Heat and Mass Transfer, Vol. 55, Issue 15-16, pp. 4029-4036, 2012.
    [11] V. K. Singh, and P. Talukdar, “Comparisons of different heat transfer models of a walking beam type reheat furnace,” International Journal of Heat and Mass Transfer, Vol. 547, pp. 20-26, 2013.
    [12] T. Morgado, P. J. Coelho, and P. Talukdar, “Assessment of uniform temperature assumption in zoning on the numerical simulation of a walking beam reheating furnace,” Applied Thermal Engineering, Vol. 76, pp. 496-508, 2015.
    [13] J. M. Casal, J. Porteiro, J. L. Míguez, and A. Vazquez, “New methodology for CFD three-dimensional simulation of a walking beam type reheating furnace in steady state,” Applied Thermal Engineering, Vol. 86, pp. 69-80, 2015.
    [14] C. N. Lin, Y. P. Luo, J. Y. Jang, and C. H. Wang,“A novel approach to estimate the optimum zone fuel mass flow rates for a walking beam type reheating furnace,”3rd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, Taipei, Taiwan, 2015.
    [15] J. Y. Jang, Y. W. Lee, C. N. Lin, and C. H. Wang,“3-D transient heat transfer analysis of slab heating characteristics in a reheating furnace in hot strip mills,”International Conference on Advanced Material Science and Engineering, Shenzhen, Guangdong, China, 2016.
    [16] T. Ishii, C. Zhang, and S. Suglyama, “Numerical simulations of highly preheated air combustion in an industrial furnace,” Transactions of the ASME, Vol. 120, pp. 276-284, 1989.
    [17] Y. Suzukawa, S. Sugiyama, Y. Hino, M. Ishioka, and I. Mori, “Heat transfer improvement and NOx reduction by highly preheated air combustion,” Energy Convers. Mgmt Vol. 38, No. 10-13, pp. 1061-1071, 1997.
    [18] T. Ishii, C. Zhang, and Y. Hino, “Numerical study of the performance of a regenerative furnace,” Heat Transfer Engineering, Vol. 23, No. 4, pp. 23-33, 2002.
    [19] N. Rafidi, and W. Blasiak, “Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners,” Applied Thermal Engineering, Vol. 25, pp. 2966-2982, 2005.
    [20] K. Kang, S. K. Hong, D. S. Noh, and H. S. Ryou, “Heat transfer characteristics of ceramic honeycomb regenerator for an oxy-fuel combustion furnace,” Applied Thermal Engineering, Vol. 70, pp. 494-500, 2005.
    [21] B. E. Launder, and D. B. Spalding, “Mathematical Models of Turbulence,” Academic, London, Chap. 5, pp. 99-100, 1972.
    [22] M. F. Modest, “Radiative heat transfer,” 2nd Ed., McGraw-Hill, New York, USA, 2003.
    [23] B. G. Carlson, and K. D. Lathrop, “Transport Theory-The Method of Discrete Ordinates,” In H. Greenspan, C. N. Kelber, and D. Okrent, (eds.), Computing Methods in Reactor Physics, Chap. 3, pp. 165-266, Gordon and Breach, New York, 1986.
    [24] M. F. Modest, “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,” J. Heat Transfer, Vol. 113, pp. 650-656, 1991.
    [25] A. Coppalle, and P. Vervisch, “The Total Emissivities of High-Temperature Flames,” Combustion and Flame, Vol. 49, pp. 101-108, 1983.
    [26] T. F. Smith, Z. F. Shen, and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” J. Heat Transfer, Vol. 104, pp. 602-608, 1982.
    [27] R. Siegel, and J. Howell, “Thermal Radiation Heat Transfer,” 4th Ed., Taylor and Francis, New York, 2002.
    [28] F. P. Incoropera, D. P. DeWitt, T. L. BergMan, and A. S. Lavine, “Fundamentals of Heat and Mass Transfer,” 6th Ed., John & Sons, Hoboken, USA, 2007.
    [29] ANSYS Fluent, A Release 15.0 documentation, ANSYS, Inc. 2013.
    [30] W. M. Kays, and A. L. London, “Compact Heat Exchangers”, 3rd Ed, McGraw-Hill, New York, 1964.
    [31] P. Razelos, “An Analytical Solution to the Electric Analog Simulation of the Regenerative Heat Exchanger with Time-Varying Fluid Inlet Temperature”, Warme-und Stoffubertrag, Vol. 12, pp. 59-71, 1979.
    [32] J. O. Hinze, “Turbulence,” McGraw-Hill, New York, USA, 1975.
    [33] J. P. Van Doormaal, and G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
    [34] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corporation, 1984.
    [35] 賴奕勳,“蓄熱式加熱爐球狀式蓄熱體熱液動性能分析,”機械工程研究所, 國立成功大學碩士論文, 指導教授:張錦裕, 2016.

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE