| 研究生: |
秦玉玲 Chin, Yu-Ling |
|---|---|
| 論文名稱: |
以反應性磁控濺鍍沈積氧化亞銅薄膜之結構與光電性質研究 The structural and opto-electrical properties of cuprous oxide films deposited by reactive magnetron sputtering |
| 指導教授: |
林天財
Lin, Tien-Chai 李世欽 Li, Shin-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 反應性濺鍍法 、氧化亞銅 、太陽能電池 、微結構 |
| 外文關鍵詞: | Cuprous Oxide, Reactive Sputter, Solar Cell, Microstructure |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化亞銅具有在可見光區吸收係數大的特性,若應用在太陽能電池上,預期將增加太陽能電池對入射太陽光的吸收波長範圍變大。因此期望藉由改變製程參數,研究其對氧化亞銅薄膜之特性的影響。
本研究以射頻磁控濺鍍系統,使用銅金屬靶搭配不同氧氣流量比例的氣氛進行反應性濺鍍,以及改變濺鍍時的基板溫度與射頻功率,藉以得到不同性質表現之氧化亞銅薄膜。之後以低銳角繞射(GIAXRD)進行薄膜結構分析,以掃描式電子顯微鏡(SEM)觀察表面形態,光電性質的表現則以紫外光-可見光光譜儀(UV-Vis)及四點探針做分析。
實驗結果顯示,單相的氧化亞銅成長條件不易控制。氧化亞銅薄膜之表面形態、光性及電性與射頻功率、基板溫度以及氧氣流率有密切的關係。在GIAXRD中發現, Cu4O3(301)、Cu4O3(303)、CuO(021)對射頻功率、基板溫度以及氧氣流率三項變因很不敏感。另外,氧格隙可增加氧化亞銅的導電性,同時會使薄膜在可見光的吸收變強,有利於在太陽能電池上之應用。
關鍵字:反應性濺鍍法、氧化亞銅、太陽能電池、微結構
The cuprous oxide has high absorption coefficient in visible range. The film applied to solar cell application which is expected to enlarge the range of wavelength and to absorbe more sunlight energy. Therefore, we expect to change the procedure parameter and to deeply understand the cuprous oxide films characteristics.
In this study, cuprous oxide films were prepared by RF magnetron reactive sputtering using a Cu target with various gas flow ratios. By changing the substrate heating temperatures and RF power during sputtering, the cuprous oxide films would exhibit different properties. The structure of cuprous oxide films were characterized by glancing incident angle X-ray diffraction (GIAXRD). The morphology of cuprous oxide films were observed by scanning electron microscope (SEM). The transmittance of cuprous oxide films was measured by UV-VIS spectrophotometer. Four-point probe were used to measure the resistivity of cuprous oxide films.
The results showed that it is difficult to prepare single phase cuprous oxide films. The procedure parameters of RF power, oxygen flow ratio and substrate temperature have strong influences on the surface morphology, electrical and optical properties of Cu2O films. In GIAXRD analysed, we found that Cu4O3(301), Cu4O3(303) and CuO(021) phases are not sensitive to the procedure parameters of RF power, oxygen flow ratio and substrate temperature. Besides, the conductive mechanism is affected by the interstitial oxygen atoms, and there are obvious absorption in visible region can be applied in Solar Cell device.
KEY WORDS:Reactive Sputter, Cuprous Oxide, Solar Cell, Microstructure
[1] 莊嘉琛, “太陽能工程-太陽能電池篇”, 全華科技圖書股份有限公司, 台北市, (1997) p.1-3
[2] H. Derin, K. Kantarli, “Optical characterization of thin thermal oxide films on copper by ellipsometry”, Appl. Phys. A, Vol. 75, (2002) p.391
[3] T. Ito, T. Kawashima, H. Yamaguchi, T. Masumi and S. Adachi, “Optical Properties of Cu2O Sutdied by Spectroscopic Ellipsometry”, J. Phys. Soc. Jpa., Vol. 67, No.6, (1998) p.2125
[4] Toshiro Maruyama, “Copper oxide thin Þlms prepared by chemical vapor deposition from copper dipivaloylmethanate”, Solar Energy Materials & Solar Cells, Vol. 56, (1998) p.85
[5] Y L Liu, Y C Liu, R Mu, H Yang, C L Shao, J Y Zhang,YMLu, D Z Shen and XWFan, “The structural and optical properties of Cu2O films electrodeposited on different substrates”, Semicond. Sci. Technol., Vol. 20, (2005),44–49
[6] B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, Vol. 396, (2001) p.90
[7] J.F. Pierson, A. Thobor-Keck, A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering”, Applied Surface Science, Vol. 210, (2003) p.359
[8] T Kosugi, S Kaneko., “Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films”, J. Am. Ceram. Soc., Vol. 81, No. 12, (1998) p.3117
[9] H. Matsumura, A. Fujii and T. Kitatani, “Properties of High-Mobility Cu2O Films Prepared by Thermal Oxidation of Cu at Low Temperatures”, Jpn. J. Appl. Phys., Vol. 35, (1996) p.5631
[10] 高正雄, “超LSI時代-電漿化學”, 復漢出版社, 台南市, (1999) p.1
[11] 羅吉宗, “薄膜科技與應用”, 全華科技圖書股份有限公司, 台北市, (2004) p.2-5
[12] 楊錦昌, “基礎濺鍍電漿”, 電子發展月刊, 68期, (1983) p.13
[13] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, New York, (1980) p.49,202
[14] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts”, ELECTRONICS LETTERS, Vol. 34, No. 24, (1998) p.2354
[15] 李玉華, “透明導電膜及其應用”, 科儀新知, 12卷, 第一期,(1980) p.94
[16] 白木 靖寬、吉田 貞史, “薄膜工程學”, 全華科技圖書股份有限公司, 台北市, (2004) p.2-48
[17] L. Davis, “Properties of Transparent Conducting Oxides Deposited at Room Temperature”, Thin Solid Films, Vol. 236, (1993) p.1
[18] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing, Philadelphia, (1995) p.22
[19] K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic Thin Film Science”, Macmillan Publishing Company, New York, (1992)
[20] M. Ohring, “The Materials Science of Thin Films”, Academic Press, New Jersey, (1992) p.197,224
[21] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., Vol. 11, (1974) p.666
[22] B. A. Movchan and A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zir-conium dioxide”, Phys. Met. Metallogr., Vol. 28, (1969) p.83
[23] Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, “Physical ceramics”, John Wiley & Sons, New York, (1997) p.24, 105, 129, 131
[24] L. Kleinman and K. Mednick, “Self-consistent energy bands of Cu2O”, Phys. Rev. B, Vol. 21, No. 4, (1980) p.1549
[25] Chen Z Z, Shi E W, Zheng Y Q, Li W J, Xiao B and Zhuang J Y, “Growth of hex-pod-like Cu2O whisker under hydrothermal conditions”, J. Cryst. Growth, Vol. 249, (2003) p.294
[26] C A N Fernando, L A A De Silva, R M Mehra and K Takahashi, “Junction effects of p-Cu2O photocathode with layers of hole transfer sites (Au) and electron transfer sites (NiO) at the electrolyte interface”, Semicond. Sci. Technol., Vol.16, (2001) p.433
[27] Mathew X, Mathews N R and Sebastian P J, “Temperature dependence ofthe optical transitions in electrodeposited Cu2O thin films”, Sol. Energy Mater. Sol. Cells, Vol. 70, (2001) p.277
[28] R. W. G. Wyckoff, “Crystal Structures”, Wiley, New York, (1965)
[29] J. M. Zuo, M. Kim, M. O’Keeffe and J. C. H. Spence, “Direct observation of d holes and Cu-Cu bonding in Cu2O”, Published in Nature Vol. 401, (1999) p.49
[30] K.H. Yoon, W.J. Choi, D.H. Kang, “Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate”, Thin Solid Films, Vol. 372, (2000) p.250
[31] T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, “Galvanostatic deposition and characterization of cuprous oxide thin films”, J. Crystal Growth, Vol. 216, (2000) p.304
[32] A.O. Musa, T. Akomolafe, M.J. Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties”, Sol. Energy Mater. Sol. Cells, Vol. 51, (1998) p.305
[33] T. Maruyama, “Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate”, Solar Ener. Mater. Solar Cells, Vol. 56, (1998) p.85
[34] L.C. Olsen, R.C. Bohara, M.W. Urie, “Explanation for low-efficiency Cu2O Schottky-barrier solar cells”, Appl. Phys. Lett., Vol. 34, (1979) p.47
[35] G.P. Pollack, D. Trivich, “Photoelectric properties of cuprous oxide”, J. Appl. Phys., Vol. 46, (1975) p.163
[36] W. Siripala, L.D.R.D. Perera, K.T.L. De Silva, J.K.D.S. Jayanetti, I.M. Dharmadasa, “Study of annealing effects of cuprous oxide grown by electrodeposition technique”, Sol. Energy Mater. Sol. Cells, Vol. 44, (1996) p.251
[37] M Ristov, G J Sinadinovski, M Mitreski., “Chemically deposited Cu2O thin film as an oxygen pressure sensor”, Thin Solid Films, Vol. 167, (1988) p.309
[38] M Hara, H Hasei, M Yashima et al., “Mechano-catalytic overall water spafion-depositlitting (II) ned Cu2O”, Applied Catalysis A: General, Vol.190, (2000) p.35
[39] H Maruska, A K Ghosh., “Photocatalytic decomposition of water at semiconductor electrodes” ,Solar Energy, Vol. 20, (1978) p.443
[40] T Takata, S Ikeda, A Tanaka et al., “Mechano-catalytic overall water splitting on some oxides (II”), Applied Catalysis A: General, Vol. 200, (2000) p.255
[41] N Ozer, F Tepehan., “Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques”, Solar Energy Materials and Solar Cell, Vol. 30, (1993) p.13
[42] J Ramirez-Ortiz, T Ogura, J Medina-Valtierra et al., “A catalytic application of Cu2O and CuO films deposited over fiberglass”, Applied Surface Science, Vol. 174, (2001) p.177
[43] Xiliang Nie, Su-Huai Wei, and S. B. Zhang, “First-principles study of transparent p-type conductive SrCu2O2 and related compounds”, Phys. Rev. B, Vol. 65, (2002) p.075111
[44] Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Electronic structure and optical properties of SrCu2O2”, J. Appl. Phys., Vol. 91, No. 5, (2002) p.3074
[45] Hiroshi Yanagi, Hiroshi Kawazoe, Atsushi Kudo, Masahiro Yasukawa and Hideo Hosono, “Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides”, Journal of Electroceramics, Vol. 4, (2000) p.407
[46] A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay, “Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering”, Thin Solid Films, Vol. 440, (2003) p.5
[47] H. Yanagi, S. Inoue, K. Ueda, and H. Kawazoe, “Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2”, J. Appl. Phys., Vol. 88, (2000) p.4159
[48] K. Kawaguchi, R. Kita, M. Nishiyama and T. Morishita, “Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+”, J. Cryst. Growth, Vol. 143, (1994) p.221
[49] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, “P-type electrical conduction in transparent thin films of CuAlO2”, Nature, Vol.389, (1997) p.939
[50] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “Transparent p-type conducting oxide: design and fabrication of p-n heterojunctions”, MRS Bulletin, Vol. 25, No, 8, (2000) p,28
[51] A. Buljan, P. Alemany, and E. Ruiz, “Electronic Structure and Bonding in CuMO2 (M = Al, Ga, Y) Delafossite-Type Oxides: An Ab Initio Study”, J. Phys. Chem. B, Vol. 103, (1999) p.8060
[52] F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, J . Appl. Phys., Vol. 46, No. 8, (1975) p.3381
[53] S. Schiller, G. Beister,W. Sieber, “Reactive high rate D.C. sputtering: Deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode”, Thin Solid Films, Vol. 111, (1984) p.259
[54] Maissel L. I., Glang R., “Hand book of thin film technology”, Mc Graw-Hill, New York, (1983) p.4
[55] S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, “Deposition of thin films of deferent oxides of copper by RF reactive sputtering and their characterization”, Vacuum, Vol. 57, (2000) p.377
[56] Li J, Vizkelethy G, Revesz P, Mayer JW, J. Appl. Phys., Vol. 69 (1991) p.1021