簡易檢索 / 詳目顯示

研究生: 秦玉玲
Chin, Yu-Ling
論文名稱: 以反應性磁控濺鍍沈積氧化亞銅薄膜之結構與光電性質研究
The structural and opto-electrical properties of cuprous oxide films deposited by reactive magnetron sputtering
指導教授: 林天財
Lin, Tien-Chai
李世欽
Li, Shin-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 反應性濺鍍法氧化亞銅太陽能電池微結構
外文關鍵詞: Cuprous Oxide, Reactive Sputter, Solar Cell, Microstructure
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化亞銅具有在可見光區吸收係數大的特性,若應用在太陽能電池上,預期將增加太陽能電池對入射太陽光的吸收波長範圍變大。因此期望藉由改變製程參數,研究其對氧化亞銅薄膜之特性的影響。
    本研究以射頻磁控濺鍍系統,使用銅金屬靶搭配不同氧氣流量比例的氣氛進行反應性濺鍍,以及改變濺鍍時的基板溫度與射頻功率,藉以得到不同性質表現之氧化亞銅薄膜。之後以低銳角繞射(GIAXRD)進行薄膜結構分析,以掃描式電子顯微鏡(SEM)觀察表面形態,光電性質的表現則以紫外光-可見光光譜儀(UV-Vis)及四點探針做分析。
    實驗結果顯示,單相的氧化亞銅成長條件不易控制。氧化亞銅薄膜之表面形態、光性及電性與射頻功率、基板溫度以及氧氣流率有密切的關係。在GIAXRD中發現, Cu4O3(301)、Cu4O3(303)、CuO(021)對射頻功率、基板溫度以及氧氣流率三項變因很不敏感。另外,氧格隙可增加氧化亞銅的導電性,同時會使薄膜在可見光的吸收變強,有利於在太陽能電池上之應用。

    關鍵字:反應性濺鍍法、氧化亞銅、太陽能電池、微結構

    The cuprous oxide has high absorption coefficient in visible range. The film applied to solar cell application which is expected to enlarge the range of wavelength and to absorbe more sunlight energy. Therefore, we expect to change the procedure parameter and to deeply understand the cuprous oxide films characteristics.
    In this study, cuprous oxide films were prepared by RF magnetron reactive sputtering using a Cu target with various gas flow ratios. By changing the substrate heating temperatures and RF power during sputtering, the cuprous oxide films would exhibit different properties. The structure of cuprous oxide films were characterized by glancing incident angle X-ray diffraction (GIAXRD). The morphology of cuprous oxide films were observed by scanning electron microscope (SEM). The transmittance of cuprous oxide films was measured by UV-VIS spectrophotometer. Four-point probe were used to measure the resistivity of cuprous oxide films.
    The results showed that it is difficult to prepare single phase cuprous oxide films. The procedure parameters of RF power, oxygen flow ratio and substrate temperature have strong influences on the surface morphology, electrical and optical properties of Cu2O films. In GIAXRD analysed, we found that Cu4O3(301), Cu4O3(303) and CuO(021) phases are not sensitive to the procedure parameters of RF power, oxygen flow ratio and substrate temperature. Besides, the conductive mechanism is affected by the interstitial oxygen atoms, and there are obvious absorption in visible region can be applied in Solar Cell device.
    KEY WORDS:Reactive Sputter, Cuprous Oxide, Solar Cell, Microstructure

    中文摘要.................................................................................................. I 英文摘要................................................................................................. II 致謝........................................................................................................ III 目錄.........................................................................................................IV 表目錄.................................................................................................. VII 圖目錄.................................................................................................. VIII 第一章 序論............................................................................................ 1 1-1 前言.................................................................................................. 1 1-2 研究目的與動機......................................................................... 2 第二章 理論基礎.................................................................................... 4 2-1 濺鍍原理....................................................................................... 4 2-1.1 電漿原理............................................................................... 4 2-1.2 濺鍍原理............................................................................... 5 2-1.3 射頻磁控濺鍍................................................................................ 8 2-1.4 反應性濺鍍................................................................................ 10 2-2 薄膜成長原理.......................................................................... 12 2-2.1 薄膜成核與成長............................................................. 12 2-2.2 薄膜組織結構................................................................. 15 2-3 陶瓷的點缺陷(point defects)理論........................................... 17 2-4 氧化亞銅的鍍層特性.............................................................. 20 2-4.1 基本性質......................................................................... 20 2-4.2 電學性質......................................................................... 22 2-4.3 光學性質......................................................................... 26 第三章 實驗方法與步驟...................................................................... 27 3-1 實驗材料.................................................................................. 27 3-2 實驗設備.................................................................................. 28 3-3 實驗流程.................................................................................. 30 3-3.1 基材清洗......................................................................... 31 3-3.2 鍍膜程序及參數設定..................................................... 33 3-4 鍍層性質分析.......................................................................... 34 3-4.1 低銳角X光繞射分析...................................................... 34 3-4.2 薄膜厚度量測與成長速率............................................. 34 3-4.3 表面型態觀察................................................................. 35 3-4.4 電性量測......................................................................... 36 3-4.5 光性量測......................................................................... 37 第四章 結果與討論.............................................................................. 38 4-1 製程條件對濺鍍速率的影響.................................................. 38 4-1.1 射頻功率對濺鍍速率的影響......................................... 38 4-1.2 氧氣流率對濺鍍速率的影響......................................... 38 4-1.3 基板加熱溫度對濺鍍速率的影響................................. 42 4-2 薄膜微結構分析...................................................................... 46 4-2.1 GIAXRD.......................................................................... 46 4-2.1.a 基板加熱溫度對薄膜晶體結構的影響............... 46 4-2.1.b 射頻功率對薄膜晶體結構的影響....................... 51 4-2.2 薄膜表面分析................................................................. 54 4-2.2.a 射頻功率對薄膜表面型態的影響....................... 54 4-2.2.b 氧氣流率對薄膜表面型態的影響....................... 55 4-2.2.c 基板加熱溫度對薄膜表面型態的影響............... 55 4-3 薄膜導電性質量測.................................................................. 63 4-4 薄膜光學性質量測.................................................................. 66 第五章 結論.......................................................................................... 67 參考文獻................................................................................................ 68 自述……………………………………………………………….75 表目錄 Table 1-1 以不同方法製備薄膜之優劣比較表................................... 3 Table 3-1 實驗參數設定..................................................................... 33 圖目錄 Fig. 2-1 正離子與靶材表面之交互作用............................................... 5 Fig. 2-2 二次電子射出率....................................................................... 7 Fig. 2-3 在外加電場與磁場下,電子之移動路徑示意圖.................. 9 Fig. 2-4 磁控濺鍍系統中,靶材磁場分布與電子移動路徑............... 9 Fig. 2-5 沉積速率與O2/Ar流量之關係圖............................................ 11 Fig. 2-6 基板表面上薄膜之成核與成長示意圖................................. 13 Fig. 2-7 Volmer - Weber樣式示意圖.................................................... 13 Fig. 2-8 Frank - Van der Merwe樣式示意圖........................................ 14 Fig. 2-9 Sranski - Krastanov樣式示意圖.............................................. 14 Fig. 2-10 物理氣相沉積薄膜之結構區模型....................................... 16 Fig. 2-11 本質離子缺陷示意圖........................................................... 19 Fig. 2-12 MgO經估算後其缺陷在能帶中的能階位置圖.................... 19 Fig. 2-13 Cu2O的結構…………………............................................... 21 Fig. 2-14 Cu2O的晶體結構示意圖....................................................... 21 Fig. 2-15 CMVB法之示意圖................................................................ 25 Fig. 2-16 Cu2O的電子結構示意圖....................................................... 25 Fig. 2-17 SrCu2O2的晶體結構.............................................................. 26 Fig. 3-1 射頻磁控濺鍍系統................................................................. 29 Fig. 3-2 實驗流程圖............................................................................. 30 Fig. 3-3 基板清洗步驟......................................................................... 32 Fig. 3-4 α-step示意圖............................................................................ 35 Fig. 3-5 四點探針示意圖..................................................................... 36 Fig. 4-1 固定工作壓力3×10-5 Torr、基板未加熱時,不同射頻 功率及氧氣流率對濺鍍速率關係圖..................................... 39 Fig. 4-2 固定工作壓力3×10-5 Torr、基板加熱至100℃時,不同 射頻功率及氧氣流率對濺鍍速率關係圖............................. 40 Fig. 4-3 固定工作壓力3×10-5 Torr、基板加熱至150℃時,不同 射頻功率及氧氣流率對濺鍍速率關係圖............................. 40 Fig. 4-4 固定工作壓力3×10-5 Torr、基板加熱至200℃時,不同 射頻功率及氧氣流率對濺鍍速率關係圖............................. 41 Fig. 4-5 固定工作壓力3×10-5 Torr、基板加熱至100℃時,不同 射頻功率及氧氣流率對濺鍍速率關係圖............................. 41 Fig. 4-6 固定工作壓力3×10-5 Torr、射頻功率20W時,不同基板 溫度與氧氣流率對濺鍍速率的關係圖................................. 44 Fig. 4-7 固定工作壓力3×10-5 Torr、射頻功率40W時,不同基板 溫度與氧氣流率對濺鍍速率的關係圖................................. 45 Fig. 4-8 固定工作壓力3×10-5 Torr、射頻功率60W時,不同基板 溫度與氧氣流率對濺鍍速率的關係圖................................. 45 Fig. 4-9 射頻功率20W、氧氣流率10%時,不同基板溫度的 GIAXRD圖.............................................................................. 47 Fig. 4-10 射頻功率20W、氧氣流率20%時,不同基板溫度的 GIAXRD圖............................................................................ 48 Fig. 4-11 射頻功率20W、氧氣流率30%時,不同基板溫度的 GIAXRD圖............................................................................ 48 Fig. 4-12 射頻功率40W、氧氣流率10%時,不同基板溫度的 GIAXRD圖........................................................................... 49 Fig. 4-13 射頻功率40W、氧氣流率30%時,不同基板溫度的 GIAXRD圖........................................................................... 49 Fig. 4-14 射頻功率60W、氧氣流率10%時,不同基板溫度的 GIAXRD圖........................................................................... 50 Fig. 4-15 射頻功率60W、氧氣流率20%時,不同基板溫度的 GIAXRD圖........................................................................... 50 Fig. 4-16 基板未加熱、氧氣流率10%時,不同功率的 GIAXRD圖........................................................................... 52 Fig. 4-17 基板100℃、氧氣流率10%時,不同功率的 GIAXRD圖........................................................................... 52 Fig. 4-18 基板150℃、氧氣流率10%時,不同功率的 GIAXRD圖........................................................................... 53 Fig. 4-19 基板100℃、氧氣流率20%時,不同功率的 GIAXRD圖........................................................................... 53 Fig. 4-20 基板溫度250℃、氧氣流率10%時,不同功率的 SEM影像.............................................................................. 57 Fig. 4-21 基板溫度100℃、氧氣流率20%時,不同功率的 SEM影像.............................................................................. 58 Fig. 4-22 基板溫度100℃、功率60W時,不同氧氣流率的 SEM影像.............................................................................. 59 Fig. 4-23 氧流率20%、射頻功率20W時,不同基板溫度的 SEM影像.............................................................................. 60 Fig. 4-24 氧流率30%、射頻功率40W時,不同基板溫度的 SEM影像.............................................................................. 62 Fig. 4-25 射頻功率60W、氧氣流率20%時,基板溫度對氧化亞銅 鍍膜之電阻率影響.............................................................. 64 Fig.4-26 以氧化亞銅為主要相之鍍膜電阻率與射頻功率 的關係....................................................................................65 Fig.4-27 射頻功率20W、氧氣流率20%時,以氧化亞銅為主要相 之鍍膜電阻率與基板溫度的關係.........................................65 Fig. 4-28 射頻功率20W、氧流率20%時,基板溫度對穿透率之 影響...................................................................................... 66

    [1] 莊嘉琛, “太陽能工程-太陽能電池篇”, 全華科技圖書股份有限公司, 台北市, (1997) p.1-3
    [2] H. Derin, K. Kantarli, “Optical characterization of thin thermal oxide films on copper by ellipsometry”, Appl. Phys. A, Vol. 75, (2002) p.391
    [3] T. Ito, T. Kawashima, H. Yamaguchi, T. Masumi and S. Adachi, “Optical Properties of Cu2O Sutdied by Spectroscopic Ellipsometry”, J. Phys. Soc. Jpa., Vol. 67, No.6, (1998) p.2125
    [4] Toshiro Maruyama, “Copper oxide thin Þlms prepared by chemical vapor deposition from copper dipivaloylmethanate”, Solar Energy Materials & Solar Cells, Vol. 56, (1998) p.85
    [5] Y L Liu, Y C Liu, R Mu, H Yang, C L Shao, J Y Zhang,YMLu, D Z Shen and XWFan, “The structural and optical properties of Cu2O films electrodeposited on different substrates”, Semicond. Sci. Technol., Vol. 20, (2005),44–49
    [6] B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, Vol. 396, (2001) p.90
    [7] J.F. Pierson, A. Thobor-Keck, A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering”, Applied Surface Science, Vol. 210, (2003) p.359
    [8] T Kosugi, S Kaneko., “Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films”, J. Am. Ceram. Soc., Vol. 81, No. 12, (1998) p.3117
    [9] H. Matsumura, A. Fujii and T. Kitatani, “Properties of High-Mobility Cu2O Films Prepared by Thermal Oxidation of Cu at Low Temperatures”, Jpn. J. Appl. Phys., Vol. 35, (1996) p.5631
    [10] 高正雄, “超LSI時代-電漿化學”, 復漢出版社, 台南市, (1999) p.1
    [11] 羅吉宗, “薄膜科技與應用”, 全華科技圖書股份有限公司, 台北市, (2004) p.2-5
    [12] 楊錦昌, “基礎濺鍍電漿”, 電子發展月刊, 68期, (1983) p.13
    [13] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, New York, (1980) p.49,202
    [14] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts”, ELECTRONICS LETTERS, Vol. 34, No. 24, (1998) p.2354
    [15] 李玉華, “透明導電膜及其應用”, 科儀新知, 12卷, 第一期,(1980) p.94
    [16] 白木 靖寬、吉田 貞史, “薄膜工程學”, 全華科技圖書股份有限公司, 台北市, (2004) p.2-48
    [17] L. Davis, “Properties of Transparent Conducting Oxides Deposited at Room Temperature”, Thin Solid Films, Vol. 236, (1993) p.1
    [18] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing, Philadelphia, (1995) p.22
    [19] K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic Thin Film Science”, Macmillan Publishing Company, New York, (1992)
    [20] M. Ohring, “The Materials Science of Thin Films”, Academic Press, New Jersey, (1992) p.197,224
    [21] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., Vol. 11, (1974) p.666
    [22] B. A. Movchan and A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zir-conium dioxide”, Phys. Met. Metallogr., Vol. 28, (1969) p.83
    [23] Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, “Physical ceramics”, John Wiley & Sons, New York, (1997) p.24, 105, 129, 131
    [24] L. Kleinman and K. Mednick, “Self-consistent energy bands of Cu2O”, Phys. Rev. B, Vol. 21, No. 4, (1980) p.1549
    [25] Chen Z Z, Shi E W, Zheng Y Q, Li W J, Xiao B and Zhuang J Y, “Growth of hex-pod-like Cu2O whisker under hydrothermal conditions”, J. Cryst. Growth, Vol. 249, (2003) p.294
    [26] C A N Fernando, L A A De Silva, R M Mehra and K Takahashi, “Junction effects of p-Cu2O photocathode with layers of hole transfer sites (Au) and electron transfer sites (NiO) at the electrolyte interface”, Semicond. Sci. Technol., Vol.16, (2001) p.433
    [27] Mathew X, Mathews N R and Sebastian P J, “Temperature dependence ofthe optical transitions in electrodeposited Cu2O thin films”, Sol. Energy Mater. Sol. Cells, Vol. 70, (2001) p.277
    [28] R. W. G. Wyckoff, “Crystal Structures”, Wiley, New York, (1965)
    [29] J. M. Zuo, M. Kim, M. O’Keeffe and J. C. H. Spence, “Direct observation of d holes and Cu-Cu bonding in Cu2O”, Published in Nature Vol. 401, (1999) p.49
    [30] K.H. Yoon, W.J. Choi, D.H. Kang, “Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate”, Thin Solid Films, Vol. 372, (2000) p.250
    [31] T. Mahalingam, J.S.P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, “Galvanostatic deposition and characterization of cuprous oxide thin films”, J. Crystal Growth, Vol. 216, (2000) p.304
    [32] A.O. Musa, T. Akomolafe, M.J. Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties”, Sol. Energy Mater. Sol. Cells, Vol. 51, (1998) p.305
    [33] T. Maruyama, “Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate”, Solar Ener. Mater. Solar Cells, Vol. 56, (1998) p.85
    [34] L.C. Olsen, R.C. Bohara, M.W. Urie, “Explanation for low-efficiency Cu2O Schottky-barrier solar cells”, Appl. Phys. Lett., Vol. 34, (1979) p.47
    [35] G.P. Pollack, D. Trivich, “Photoelectric properties of cuprous oxide”, J. Appl. Phys., Vol. 46, (1975) p.163
    [36] W. Siripala, L.D.R.D. Perera, K.T.L. De Silva, J.K.D.S. Jayanetti, I.M. Dharmadasa, “Study of annealing effects of cuprous oxide grown by electrodeposition technique”, Sol. Energy Mater. Sol. Cells, Vol. 44, (1996) p.251
    [37] M Ristov, G J Sinadinovski, M Mitreski., “Chemically deposited Cu2O thin film as an oxygen pressure sensor”, Thin Solid Films, Vol. 167, (1988) p.309
    [38] M Hara, H Hasei, M Yashima et al., “Mechano-catalytic overall water spafion-depositlitting (II) ned Cu2O”, Applied Catalysis A: General, Vol.190, (2000) p.35
    [39] H Maruska, A K Ghosh., “Photocatalytic decomposition of water at semiconductor electrodes” ,Solar Energy, Vol. 20, (1978) p.443
    [40] T Takata, S Ikeda, A Tanaka et al., “Mechano-catalytic overall water splitting on some oxides (II”), Applied Catalysis A: General, Vol. 200, (2000) p.255
    [41] N Ozer, F Tepehan., “Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques”, Solar Energy Materials and Solar Cell, Vol. 30, (1993) p.13
    [42] J Ramirez-Ortiz, T Ogura, J Medina-Valtierra et al., “A catalytic application of Cu2O and CuO films deposited over fiberglass”, Applied Surface Science, Vol. 174, (2001) p.177
    [43] Xiliang Nie, Su-Huai Wei, and S. B. Zhang, “First-principles study of transparent p-type conductive SrCu2O2 and related compounds”, Phys. Rev. B, Vol. 65, (2002) p.075111
    [44] Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Electronic structure and optical properties of SrCu2O2”, J. Appl. Phys., Vol. 91, No. 5, (2002) p.3074
    [45] Hiroshi Yanagi, Hiroshi Kawazoe, Atsushi Kudo, Masahiro Yasukawa and Hideo Hosono, “Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides”, Journal of Electroceramics, Vol. 4, (2000) p.407
    [46] A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay, “Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering”, Thin Solid Films, Vol. 440, (2003) p.5
    [47] H. Yanagi, S. Inoue, K. Ueda, and H. Kawazoe, “Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2”, J. Appl. Phys., Vol. 88, (2000) p.4159
    [48] K. Kawaguchi, R. Kita, M. Nishiyama and T. Morishita, “Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+”, J. Cryst. Growth, Vol. 143, (1994) p.221
    [49] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, “P-type electrical conduction in transparent thin films of CuAlO2”, Nature, Vol.389, (1997) p.939
    [50] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, “Transparent p-type conducting oxide: design and fabrication of p-n heterojunctions”, MRS Bulletin, Vol. 25, No, 8, (2000) p,28
    [51] A. Buljan, P. Alemany, and E. Ruiz, “Electronic Structure and Bonding in CuMO2 (M = Al, Ga, Y) Delafossite-Type Oxides: An Ab Initio Study”, J. Phys. Chem. B, Vol. 103, (1999) p.8060
    [52] F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, J . Appl. Phys., Vol. 46, No. 8, (1975) p.3381
    [53] S. Schiller, G. Beister,W. Sieber, “Reactive high rate D.C. sputtering: Deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode”, Thin Solid Films, Vol. 111, (1984) p.259
    [54] Maissel L. I., Glang R., “Hand book of thin film technology”, Mc Graw-Hill, New York, (1983) p.4
    [55] S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, “Deposition of thin films of deferent oxides of copper by RF reactive sputtering and their characterization”, Vacuum, Vol. 57, (2000) p.377
    [56] Li J, Vizkelethy G, Revesz P, Mayer JW, J. Appl. Phys., Vol. 69 (1991) p.1021

    下載圖示 校內:2007-07-26公開
    校外:2009-07-26公開
    QR CODE