簡易檢索 / 詳目顯示

研究生: 蘇義傑
Su, Yi-Jie
論文名稱: 利用氫原子蝕刻碲化鉍界面研究自旋電荷轉換效率
The study of spin-to-charge conversion efficiency in Bi2Te3 interface with using hydrogen atoms etching
指導教授: 黃榮俊
Huang, Rong-Jun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 89
中文關鍵詞: 自旋幫浦自旋電荷轉換效率氫原子蝕刻自旋軌道耦合
外文關鍵詞: spin-to-charge conversion, inverse Rashba-Edelstein effect, hydrogen etching, spin pumping
相關次數: 點閱:252下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用氫原子蝕刻的方式,在拓樸絕緣體薄膜上形成鉍金屬層,先探討Bi2Te3拓樸絕緣體和Bi2Te3拓樸絕緣體/鉍金屬雙層膜兩系統與鐵磁層之間的自旋電荷轉換效率(spin-to-charge conversion efficiency )。經氫原子蝕刻處理後的Bi2Te3表面會形成鉍金屬和Bi2O3混合結構,這種混合結構使得自旋電荷轉換效率顯著提升,原因可能是介面的Rashba自旋軌道耦合(spin-orbital coupling, SOC)增強的因素。
    再來我們藉由加入銅(Cu)傳輸層以隔絕鐵磁層之磁性交互作用影響以保護拓樸表面態,改變不同的銅層厚度做一系列的實驗探討銅傳輸層對自旋電荷轉換效率的影響。分別在Bi2Te3/Py和Bi2Te3/鉍金屬/Py介面插入不同厚度的銅傳輸層,發現插入銅傳輸層皆使兩個系統的自旋電荷轉換效率大幅增益,而Bi2Te3拓樸絕緣體/鉍金屬雙層膜系統其轉換效率比純Bi2Te3薄膜系統還大4~6倍。我們研究將有助於開發高效率的自旋電子學元件。

    In the study, the hydrogen atoms etching to form a bismuth metal layer on a topological insulator thin film was utilized for exploring the spin-to-charge conversion efficiency between the Bi2Te3 topological insulator Bi metal/Bi2Te3 topological insulator bilayer with the ferromagnetic layer. After hydrogen etching treatment, the surface of Bi2Te3 forms a mixed structure of bismuth metal and Bi2O3. This mixed structure significantly enhances the spin-to-charge conversion efficiency, possibly due to the increasement of Rashba spin-orbital coupling (SOC) at the interface.
    We introduced a copper (Cu) transport layer to isolate the magnetism of the ferromagnetic layer and protect the topological surface state, conducting a series of experiments to investigate the effect of varying the Cu layer thickness on spin-to-charge conversion efficiency. Cu transport layers with different thicknesses were inserted between Bi2Te3/Py and Bi2Te3/Bi metal/Py interfaces. It was found that inserting the Cu transport layer significantly increased the spin-to-charge conversion efficiency in both systems, with the conversion efficiency of the Bi metal/Bi2Te3 bilayer system being 4-6 times greater than that of the Bi2Te3 thin film system. Our study will contribute to the development of spintronic devices with high spin-to-charge conversion efficiency.

    摘要 i Abstract ii 誌謝 ix 目錄 x 圖目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 文獻一 2 1-2-2 文獻二 7 1-2-2 文獻三 11 1-3 實驗動機 14 第二章 實驗相關理論 15 2-1. 自旋霍爾效應(Spin Hall effect, SHE) 15 2-2. 反轉自旋霍爾效應(Inverse Spin Hall effect, ISHE) 16 2-3. Rashba-Edelstein effect 17 2-4. Inverse Rashba-Edelstein effect 19 2-5. 鐵磁共振與自旋幫浦機制(Ferromagnetic resonance and spin pumping mechanism) 20 第三章 實驗儀器與量測儀器 23 3.1 製程設備 23 3-1-1. 分子束磊晶系統(Molecular Beam Epitaxy, MBE) 23 3-1-2. 離子束濺射系統(Ion Beam Sputtering, IBS) 25 3-2 分析儀器 28 3-2-1 X射線繞射儀(X-Ray Diffractometer, XRD) 29 3-2-2 X光光電子能譜儀(X-Ray Photoelectron Spectrometer, XPS) 30 3-2-3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 31 3-2-4 原子力顯微鏡(Atomic Force Microscope, AFM) 40 3-2-5 顯微拉曼光譜儀(Micro-Raman Spectrometer) 33 3-2-6 四點電阻量測(4-points probe method) 34 3-2-7 自旋幫浦系統(Spin pumping system) 35 第四章 實驗流程與數據處理 37 4-1 實驗架構 37 4-2 MBE製程步驟 39 4-3 IBS製程步驟 39 4-4 自旋幫浦系統量測與數據分析 40 4-4-1 鐵磁共振與自旋幫浦電壓 40 4-4-2 四點電阻量測 41 4-4-3 原始數據處理 42 第五章 數據結果與分析 47 5-1 Bi2Te3和Bi bilayer薄膜分析 47 5-1-1 XPS量測結果與分析 47 5-1-2 XRD量測結果與分析 49 5-1-3 Raman量測結果與分析 51 5-2 鎳鐵合金(Ni80Fe20, Py)薄膜品質確認 52 5-2-1 TEM量測結果與分析 52 5-2-2 EDS量測結果與分析 53 5-2-3 AFM量測結果與阻尼係數分析 55 5-3 自旋幫浦量測結果與分析 57 5-3-1鐵磁共振分析與自旋流密度計算 57 5-3-2 自旋幫浦電壓訊號處理 59 5-3-3 四點電阻量測數據處理 62 5-3-4 Bi2Te3/Py與Bi2Te3/Bi bilayer/Py自旋轉換效率比較 63 5-3-5 銅傳輸層對自旋幫浦系統之影響 64 第六章 結論 68 參考文獻 69

    [1]Bhatti, S., et al., Spintronics based random access memory: a review. Materials Today, 2017. 20(9): p. 530-548.
    [2]Ast, C.R., et al., Giant spin splitting through surface alloying. Phys Rev Lett,2007.98(18): p. 186807.
    [3]Shu Hsuan Su, et al., Selective Hydrogen Etching Leads to 2D Bi(111) Bilayers on Bi2Se3: Large Rashba Splitting in Topological Insulator Heterostructure , Chemistry of Materials 2017 29 (21), 8992-9000
    [4]Karube, Shutaro ; Kondou, Kouta ; Otani, YoshiChika,Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces,Applied Physics Express, Volume 9, Issue 3, article id. 033001 (2016)
    [5]Rui Sun , et al.,“Large Tunable Spin-to-Charge Conversion Induced by Hybrid Rashba and Dirac Surface States in Topological Insulator Heterostructures”, Nano Lett. 2019,19,7, 4420–4426
    [6]Hoffmann, A., Spin Hall Effects in Metals. IEEE Transactions on Magnetics, 2013. 49(10): p. 5172-5193.
    [7]Hirsch, J.E., Spin Hall Effect. Physical Review Letters, 1999. 83(9): p. 1834-1837
    [8]Guo, G.Y., et al., Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations. Physical Review Letters, 2008. 100(9): p. 096401.
    [9]Takahashi, S. and S. Maekawa, Spin current, spin accumulation and spin Hall effect. Sci Technol Adv Mater, 2008. 9(1): p. 014105.
    [10]Edelstein, V.M., Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Communications, 1990. 73(3): p. 233-235.
    [11]Rojas-Sánchez, J.C., et al., Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. Physical Review Letters, 2016. 116(9): p. 096602.
    [12]Barman, A. and J. Sinha, Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Springer, 2018.
    [13]Optimization of experiment settings in ferromagnetic resonance measurements,Zhuangqu Zhang,Results in Physics Volume 7, 2017, Pages 2614-2618
    [14]E. Lesne et al., "Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces," Nature materials, vol. 15, no. 12, p. 1261, 2016.
    [15]Cheng, C., et al., Spin to charge conversion in MoS2 monolayer with spin pumping. arXiv preprint arXiv:1510.03451, 2015.
    [16]Nakayama, H., et al., Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films, Physical Review B, 2012. 85(14): p. 144408.
    [17]IBS-250 Power Supply Technical Manual,Veeco
    [18]Thornton, S.T. and A. Rex, Modern Physics for Scientists and Engineers. 1993
    [19]XPS and UPS Background, Grimmgroup, Department of Chemistry and Biochemistry, Worcester Polytechnic Institute from: https://grimmgroup.net/research/xps/background/
    [20]An Introduction to the Principle of Atomic Force Microscope, 林明彥、張嘉升、黎文龍,科儀新知第二十七卷第二期 94.10
    [21]Pinon, S., et al., Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits. Journal of Micromechanics and Microengineering, 2012. 22(7).
    [22]An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction, Mujeeb Ahmad, July 2020Journal of Applied Physics
    [23]Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering,C. M. Bedoya-Hincapie,January 2015Ingeniare Revista chilena de ingeniería 23(1):92-97
    [24]Study of Thermal Conductivity in Two-dimensional Bi2Te3 from Micro- Raman Spectroscopy,Manavendra P. Singh, Conference on Computer and… 12 April 2021 Materials Science, Physics
    [25]E.I.Rashba and V.I.Sheka. 2015. Symmetry of Energy Bands in Crystals of
    [26]Wurtzite Type II. Symmetry of Bands with Spin-Orbit Interaction Included. New. J. Phys. 17 050202. Originally published in Fiz. Tverd. Tela: Collected Papers 2: 62–76, 1959.Jamali, M., et al., Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3. Nano Lett, 2015. 15(10): p. 7126-32.
    [27]微奈米中心. 微拉曼及微光激發螢光光譜儀. [cited 2021 12/7]; Available from: https://cmnst.ncku.edu.tw/p/405-1006-147019,c17606.php?Lang=zh-tw.
    [28]潘碧蓉,用自旋幫浦探討MoS2 / Py以及銅傳輸層對自旋電荷轉換效率之研究 碩士 thesis, 國立成功大學, (2021)
    [29]紀淵程,雙層鉍與碲化鉍異質結構介面之製備以及物理特性之研究 碩士 thesis, 國立成功大學, (2017)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE