簡易檢索 / 詳目顯示

研究生: 汪玄同
Wang, Xuan-Tong
論文名稱: 具有分支與巢狀因子的混和輸入高斯過程模型的探討
Mix-Input Gaussian Process With Branching and Nested Factors
指導教授: 陳瑞彬
Chen, Ray-Bing
學位類別: 碩士
Master
系所名稱: 管理學院 - 數據科學研究所
Institute of Data Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 44
中文關鍵詞: 高斯過程模型電腦實驗拉丁超立方設計
外文關鍵詞: Gaussian process, Computer experiments, Latin hypercube design
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章主要探討如何尋找合適的電子元件散熱片參數,以獲得更高的散熱效率。本文考慮的資料因子分為三種類型,共享因子 (Shared Factors)、分支因子 (Branching Factors)、巢狀因子 (Nested Factors)。共享因子可以是定性因子 (Qualitative Factors)或定量因子 (Quantitative Factors)。分支因子皆為定性因子,並且在每個分支因子水準中存在不同的巢狀因子,本文中的巢狀因子皆為定量因子。在本文中將散熱器參數調整問題轉化為一個最佳化問題,並採用 替代曲面協助法 尋找較佳的散熱器參數。替代曲面協助法可分為三個部分組成。第一個是初始點設計,這裡使用拉丁超立方設計 (Latin Hypercube Design)生成初始點。然後基於初始點建構替代 輔助模型, 本篇文章使用高斯過程模型 (Gaussian Process Model)作為替代輔助模型 。最後需要一個填充準則選取下一個 實驗點。本篇文章針對複雜的因子結構,提出了一個新的高斯過程模型。根據數值實驗的結果,提出的替代輔助模型有較好的表現結果。

    This thesis focus on finding the proper parameters for electronic component heat dissipation fin to get higher cooling efficiency. The factors considered in this thesis are divided into three types, shared factors, branching factors and nested factors. Shared factors can be qualitative factors or quantitative factors. Branching factors are treated as qualitative factors and there are different nested factors in each levels of branching factors. Here nested factors are only quantitative factors. In this thesis, first we transfer this tuning problem as an optimization problem and a surrogate-assistant approach is adopted to find the solution.
    The surrogate-assistant approach contains three key components. The first one is the initial design. Here a Latin hypercube design is used to generate the design points. Then the surrogate model is constructed based on the current explored points and usually the Gaussian process type model is used for surrogate construction. Finally we need to have an infill criterion for us to identify the next explored points. Due to complex factor structure, a new Gaussian process model is proposed. Based on our numerical results, the proposed surrogate-assistant approach seems performing well.

    目錄 摘要 I 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2文獻回顧 2 1.3論文架構 3 第二章 研究方法 4 2.1資料描述 5 2.2最佳拉丁方格設計(Optimal Latin Hypercube Design) 8 2.3高斯過程模型(Gaussian Process Model) 10 2.3.1連續型因子之相關函式及參數估計 10 2.3.2期望改進量(Excepted Improvement) 11 2.4定量與定性高斯過程(Quantitative and Qualitative Gaussian Process) 13 2.5分支與巢狀因子高斯過程(Branching and Nested Factor Gaussian Process) 16 2.6具有分支與巢狀因子的混和輸入高斯過程 18 2.6.1逐項定性因子水準及分支與巢狀因子高斯過程(TQBGP) 19 2.6.2定性因子水準組合及分支與巢狀因子高斯過程(CQBGP) 20 2.6.3獨立定性共享因子及分支與巢狀因子高斯過程(IQBGP) 21 第三章 模擬實驗 23 3.1模擬流程 23 3.2結果分析的驗證指標 25 3.3目標函式模擬實驗 27 3.3.1目標函式1 28 3.3.2目標函式2 31 3.4模擬實驗結論 33 第四章 電子元件散熱器 35 4.1資料介紹 35 4.2實驗流程 37 4.3實驗結果 38 第五章 結論與未來展望 43 5.1未來發展 43 參考文獻 44

    [1] Jerome Sacks, William J. Welch, Toby J. Mitchell, Henry P. Wynn (1989). “Design and Analysis of Computer Experiments.” Statistical Science, 4, 409-423.

    [2] Alexander I. J. Forrester, Andras Sobester, Andy J. Keane (2008). “Engineering Design via Surrogate Modelling: APractical Guide” Wiley.

    [3] Ying Hung, V. Roshan Joseph, Shreyes N. Melkote (2009). “Design and Analysis of Computer Experiments With Branching and Nested Factors.” Technometrics, 51(4), 354-365.

    [4] Qiang Zhou, Peter Z. G. Qian, shiyu Zhou (2011). “A simple approach to emulation for computer models with qualitative and quantitative factors.” Technometrics, 53(3), 266- 273.

    [5] Shan Ba, Willian R. Myers, William A. Brenneman. (2015). “Optimal sliced Latin hypercube designs.” Technometrics, 57(4), 479-487.

    [6] Haitao Liu, Jianfei Cai, Yew-Soon Ong (2018). “Remarks on multi-output Gaussian process regression.” Knowledge-Based Systems, Volume 144, 102-121.

    [7] Peter Z. G Qian, Huaiqing Wu, C.F. Jeff Wu (2018). “Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors.” Technometrics, 50(3), 383-396.

    無法下載圖示 校內:2027-07-22公開
    校外:2027-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE