簡易檢索 / 詳目顯示

研究生: 陳鴻瑩
Chen, Hung-Ying
論文名稱: 運用介電泳力原理並具多重/連續分類功能之微分類器研究
The Study of DEP-based Microsorter for Multiple/Continuous Particle Sorting
指導教授: 蕭飛賓
Hsiao, Fei-Bin
呂宗行
Leu, Tzong-Shyng
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 131
中文關鍵詞: 介電泳力微分類器
外文關鍵詞: dielectrophoretic, microsorter
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之目的在於探討應用介電泳力之原理研發微分類器。研究動機,有鑑於在生物科技領域及醫藥研究中所必須的重要步驟之一,是能將所要研究分析的細胞或粒子,從一群混和物中分離分類出來。本研究首先搜尋學術界在此方面之探討而發現介電泳力廣為接受為細胞分離之重要機制而且在分類過程中不會損害供研究之樣品活細胞。
      根據介電泳力的理論,本研究提出一創新之微分類器設計。此設計運用兩組電極產生介電泳力電場,能有效地將連續注入微管道的乳膠粒子先做聚焦在分類器第一階段,並排列成一列,通過第二階段分類器產生偏移現象,對於相同介電特性但不同大小粒子,因受介電泳力而偏移到不同的橫向位置,以便收集在不同之收集槽,以此來作分類。整個設計與步驟均由數值模擬與實驗來驗証分類效果。
      數值模擬與實驗結果作比較,印証了DEP之理論與模擬軟體之可信度。更重要的發現是証明了本研究所提出之微分類設計概念,是適切可行且獨具特色的。本研究之結論幾點創新之貢獻,並建議未來可進一步研究之方向。

     This study is an attempt to research on microsorters by incorporating Dielectrophoresis (DEP) theories. The research was inspired by the impressing need, in the field of biotechnology and medical applications, of the ability to sort out the cells of interest from the sample mixture. The study started with related literature review regarding DEP force and microsorting mechanism. It was confirmed that DEP, in biotechnology, serves as an appropriate mechanism in manipulating and sorting cells for no risk to cause damage to the sample.
     Based on the DEP theories, an innovated microsorting design was proposed in this study. The design employed DEP force to both focus and continuously sort the particles, through the contraction electrode as the first section and parallel electrode with different length as the second one. The designed model and procedures were carried out and verified through numerical simulation (CFD-ACE+) and experiment.
     The simulation and experimental results were reported and compared. The experiment results are agreement with the simulation results. Most importantly, the research finding indicated that the proposed design of microsorter was proved to be feasible, appropriate, and unique. The study concluded with the contribution to the field of microsorting and the implication for further research.

    ABSTRACT…………………………………… i CONTENTS…………………………………… iii LIST OF TABLE……………………………………………………… vii LIST OF FIGURE…………………………………………………… viii NOMENCLATURE……………………………………………………… xvi I INTRODUCTION……………………………………………… 1 1.1 Research on DEP as Microsorting Mechanisms…………………… 2 1.2. Research on the Application DEP………………………………… 3 1.3. Rational and Scope of the study………………………………………… 5 II THEORETICAL BACKGROUND OF DEP FORCE………………… 7 2.1 DEP Force……………………………………………………………… 7 2.2 Stokes’ Drag Force vs. DEP Force……………………………………… 10 2.3 Lateral Force vs. DEP Force…………………………………………… 11 2.4 The Simulation Software Based on DEP Theories……………………… 14 III SIMULATION TOOL……………………………………………………… 15 3.1 Flow Module …………………………………………………………… 15 3.1.1 Mass Conservation………………………………………………… 16 3.1.2 Momentum Conservation………………………………………… 16 3.2 Spray (Particle) Module………………………………………………… 17 3.3 Drag Coefficient………………………………………………………… 18 3.4 Electric Module………………………………………………………… 19 3.5 Dielectrophoretic Force Module………………………………………… 20 IV Chip FABRICATION AND EXPERIMENT SET-UP…………… 24 4.1 Chip Fabrication………………………………………………………… 24 4.1.1 Fabrication of the Electrode Parts………………………………… 24 4.1.2 The Channel Formation and Chip Bonding……………………… 25 4.1.3 Chip Packaging and Tubing……………………………………… 26 4.2 Experiment Sep-up……………………………………………………… 26 4.2.1 Optical System…………………………………………………… 26 4.2.2 Electrical Excitation System……………………………………… 27 4.2.3 Fluidics System…………………………………………………… 27 4.2.4 Sample Preparation……………………………………………… 28 V CHIP DESIGN AND THE COMPARISM SIMULATION AND EXPERIMENT…29 5.1 The Micron Flow-sorter of the 1st Generation—with Uneven Parallel Electrode Design……………………………………………………………… 29 5.1.1 The Construction of the Microsorter Design……………………… 29 5.1.2 Simulation of the Microsorter Design……………………………… 31 5.1.3 Summary of the 1st generation of DEP micron flow-sorter with Uneven Parallel Electrode……………………………………… 37 5.2 The Micron Flow-sorter of the 2nd Generation—Using Convergent Electrodes for Particle Holding, Separating, and Focusing…………… 38 5.2.1 The Construction of the Microsorter Design…………………… 38 5.2.2 Simulation of the Microsorter Design…………………………… 39 5.2.3 Summary of the 2nd Generation Microsorter Using Convergent Electrodes for Particle Holding, Separating, and Focusing………… 44 5.3 The Micron Flow-sorter of the 3rd Generation-- the multiple DEP microsorter… 46 5.3.1 The Construction of the Microsorter Design………………………… 46 5.3.2A Simulation Study of the Microsorter — the Contraction Electrode Section… 50 5.3.3A Experiment Results of the Contraction Electrode Performance…… 59 5.3.2B Simulation Studies of the Microsorter — the Uneven Parallel Electrode…… 61 5.3.3B. Experimental Results of Particle Separation……………………… 66 5.4 The 4th Generation of DEP Microsorter with Trapezoidal Deflector…… 68 5.4.1 The 4th Generation of DEP Microsorter with Trapezoidal Deflector…… 68 5.4.2 Simulation of distribution of the Trapezoidal deflector………69 5.4.3 Experiment Result of the Trapezoidal Deflector…………………… 73 VI CONCLUSION…………………………………………………………… 75 6.1 Conclusion of the Study…………………………………………………… 75 6.2 Recommendation for Further Research…………………………………… 76 REFERENCE………………………………………………………………… 78 TABLES……………………………………………………………………… 87 FIGURE……………………………………………………………………… 91

    1. Muller, T., Pfennig, A., Klien, P., Gradl, G.., Jager, M., and Schnelle, T. (2003). The Potential of Dielectrophoresis for Single-Cell Experiments. IEEE Engineering in Medical and Biology Magazine, November/December, pp.51-61.

    2. Catismpoolas, N. (Ed). (1977). Methods of Cell Separation. New York: plenum.

    3. Telleman, P., Larsen, U., Kutter, J., Friis, P. and Wolff, A. (2000). Micro tools for Cell Handling. Proc. in SPIE conference on microfluidic devices and systems, 4177, pp. 1-10.

    4. Voldman, J., Rosenthal, A. (2005). Dielectrophoretic Traps for Pingle-particle Patterning. Biophysical Journal, 88, pp. 2193-2205.

    5. Morgan, H., Hughes, M.P. (1998). Dielectrophoretic Trapping of Single sub-micrometre Scale Bioparticles. Jorunal of Physics. D: Apply. Phys, 31, pp. 2205-2210.

    6. Yoon, Y., et. al. (2003). Integrated Vertical Screen Microfilter System, using Inclined SU-8 Structures. Proc. IEEE Int. Conf. MEMS2003, pp. 227-230.

    7. Brody, J.P., Osborn, T.D., Forster, F.K. and Yager, P. (1996). A Planar Microfabricated Fluid Filter. Sensors and Actuators A (Physical), A54 (1-3), pp.704-708.

    8. Soni, G.V., Hameed, F.M., Roopa, T and Shivashankar, G.V. (2003). Development of an Optical Tweezer Combined with Micromanipulation for DNA and Protein Nanobioscience. Current Science, Vol. 83, No. 12, pp. 1464-1470.

    9. Shapiro, H.M. (1988). Practical Flow Cytometry. New York: Alan R. Liss.

    10. Goranovic, G.. et.al.(2001). Three-dimensional Single Step Flow Sheathing in Micro Cell Sorters. Modeling and Simulation of Microsystems, pp. 242-245.

    11. Chang, Sh. Lin, Ch. Lee, G. (2005). Micromachine-based Multi-channel Flow Cytometers for Cell/particle Counting and Sorting. Journal of Micromech, Microeng, 15, pp. 447-454.

    12. Tashiro, K., Ikeda, S, Sekiguchi, T. Shoji, S. Makazu, H. Funatsu, H. Tsukita, S.(2001). A particles and Biomolecules Sorting Micro Flow System Using Thermal Gelation of Methyl Cellulose Solution. Proceedings of MicroTAS 2001, Monterey, California, USA, 21-25 October 2001, pp. 471-473.

    13. Baba, Y. et al.(eds.), Manipulation of Suspended Particles in a Laminar Flow. Micro Total Analysis Systems, 2, pp.751-753, 2002.

    14. Grover, S.C., Skirtach, A.G., Gauthier, R.C., Grover, C.P. (2001). Automated Single-cell Sorting System Based on Optical Trapping. Journal of Biomedical Optics, 6 (1), pp. 14-22.

    15. Hirano, K. Baba, Y. (2002). Optical Recovery of Particles on a Chip Toward Cell Sorting and Bead-bed Detection. Proceedings of MicroTAS, Nara, Japan, November, pp. 272-274.

    16. Wang. M. et. al. (2004). Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnology, 23, pp. 83-87.

    17. Ashkin, A. (1997). Optical trapping and manipulation of neutral particles using lasers. Biophysics, 94, pp. 4853-4860.

    18. Telleman, P., Larsen, U.D , Philip, J., Blankenstein, G.., Wolff, A. (1998). Cell sorting based on continuous hydrodynamic parallel flow, in: Proceedings of MicroTAS 1998, Banff, Alberta, Canada, 13-16, pp. 39-44.

    19. Chronis, N., Lam, W., Lee. (2001). A microfabricated bio-magnetic separator based California, USA, pp. 497-498.

    20. Anne, Y.F., Spence, C. , Scherer, A., Arnold, F.H. and Quake, S.R., (1999). A microfabricated fluorescene-activated cell sorter. Nano Biotechnology, Nov. 17 (11), pp. 1109-1111.

    21. Kruger, J. et. al. (2002). Development of a microfluidic device for fluorescence activated cell sorting. Journal of Micromech, Microeng, 12, pp. 486-494.

    22. Wollff, A. et. al. (2003). Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip, 3, pp. 22-27.

    23. Larsen, U., Blankenstein, G., Branebjerg, J. (1996). Flow switch for analyte injection and cell/particle sorting. Proc. Micro Total Analysis Systems, pp.113-115.

    24. Lee, G., Hung, C. Ke, B., Huang, G., Hwei, B. (2001). Micromachined pre-focused 1x N flow switch. Journal of Micromechanics and Microengineering, 11, pp.567-573.

    25. Huh, D., Tung, Y., Grotberg, J., Skerlos, S., kurabayashi, K., Takayama, S. (2001). Air-liquid two-phase microfluidic system for low-cost, low-volume and low-power micro flow cytometer. Proceeding, Micro Total analysis Systems, pp. 468-470.

    26. Ho, C., Lin, R., Chang, H., Liu, C. (2005). Micromachined electrochemical T-switches for cell sorting applications. Lab Chip, 5, pp. 1248-1258.

    27. Kruger, J., Porta, PP., Morrison, A., Singh, K., O’Neill, A., O’Brien, PP. (2002). Micro-optical laser induced fluorescence detection on a miniaturized flow cytometry device. Proceedings of MicroTAS, Nara, Japan, Nov., pp. 290-292.

    28. Schenelle, T., Muller, T. , Gradl, G.., Shirley, S.G.., Fuhr, G.. (1999). Paired microelectrode system: dielectrophoretic particle sorting and force calibration. Journal of Electrostatics, 47, pp.121-132.

    29. Fiedler, S., Shirley, S., Schnelle, T., Guhr, G.. (1998). Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, pp.1909-1915.

    30. Durr, M., Schnelle, T., Fuhr, G..(2001). Dielectrophoretic separation and accumulation of (bio) particles in micro-fabricated continuous flow systems. Proceedings of MicroTAS 2001, Nara, Japan, Nov., pp. 124-126.

    31. Holmes, D. et. al. (2005). On-chip high-speed sorting of micro-sized particles for high-throughput analysis. IEE Proc.-Nanobiotechnol., 152(4), 129-135.

    32. Andersson, H., Berg, A. (2003). Microfluidic devices for cellomics: a review. Sensors and Actuators B, 92, pp. 315-325.

    33. Nieuwenhuis, J.H. et. al. (2003). Improved dielectrophoretic particle actuators for microfluidics. IEEE Sensor Conf., Oct. 22-24, Toronto, Canada, pp. 573-576.

    34. Wong, P.K., Wang, T., Deval, J.H., Ho, C. (2003). Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Transaction on Mechantronic, pp. 1-12.

    35. Hara, T., Ichiki, T., Horiike, Yasuda, K. (2002). Fabrication of on-chip sorter devices with sub-micrometer scale channels and self-aligned microelectrodes. Proceedings of MicroTAS 2002, Monterey, California, USA, pp. 539-540.

    36. Gascoyne, PP. R. (2004). Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proceeding of the IEEE, 92(1), pp. 22-42.

    37. Minerick, A.R., Zhou, R., Takhistov, PP., Chang, H. (2003). Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis, 24, pp. 3703-3717.

    38. Wang, X., Hughes, M.PP., Huang, Y., Becker, F., Gascoyne, PP.R.C. (1995). Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determin dielectrophoretic forces. Biochimica et Biophysica Acta, 1243, pp. 185-194.

    39. Wang, X., Huang, Y., Gascoyne, PP.R.C., Becker, F. (1997). Dielectrophoretic manipulation of particles. IEEE Transactions on Industry Applications, 3(33), pp. 660-669.

    40. Muller, T., Gradl, G.., Howitz, S., Shirley, S., Schnelle, Th., Furh, G.. (1999). A 3-D microelectrode system for handling and caging single cells and particles. Biosensors & Bioelectronics, 14, pp. 247-256.

    41. Schnelle, T., Muller, T., Fiedler, S., Fuhr, G.. (1999). The influence of higher moments on particle behaviour in dielectrophoretic field cages. Journal of Electrostatics, 46, pp. 13-28.

    42. Kentsch, J. et. al. (2003). Microdevices for separation, accumulation, and analysis of biological micro-and nanoparticles. IEE Proce.-Nanobiotechnol, 150 (2), pp. 82-89.

    43. Medoro, G. et. al. (2004). Dielectrophoretic cage-speed separation of bio-particles. Sensor Proceeding of IEEE, 76-79.

    44. Cheung, K. et. al. (2004). Microfluidic impedance spectroscopy flow cytometer: particle size calibration. P. In. MEMS2004, 17TH IEEE, 343-346.

    45. Morgan, H. et. al. (1997). Large-area traveling-wave Dielectrophoresis particle separator. Mournal of Micromech, Microeng, 7, pp. 65-70.

    46. Holmes, D. and Morgan, H. (2001). Particle focusing and separation using dielectrophoresis in a microfluidic channel. Proc. MTAS 2001, Monterey, CA, pp.111-112.

    47. Phol, H.A., and Hawk, I. (1966). Separation of living and dead cells by dielectrophoresis. Science, 152, pp. 647-649.

    48. Mason, B.D., and Hammon, E.G. (1971). “Dielectrophoretic separation of living cells Can. Journal of Microbiology, 17, pp. 879-888.

    49. Pethig, R. (1996). Dielectrophoresis: using inhomogeneous AC electric fields separate and manipulate cells. Crit. Rev. Biotechnology, 16, pp. 331-348.

    50. Docoslis, A. et. al. (1997). A novel Dielectrophoresis-based device for the selective retention of viable cells in cell culture media. Biotechnology and Bioengineering, 54 (3), pp, 239-250.

    51. Cho, Y., Doh, II. (in press). A continuous cell separation chip using hydrodynamic Dielectrophoresis (DEP) process. Sensors and Actuators A. Vol./Iss.: 121, 1, pp.59-65

    52. Auerswald, J. and Knapp, H. F. (2003). A versatile biochemical microassay platform.
    Microelectronic Engineering, pp.124.

    53. Becker, F., Wang, X., Huang, Y., Pethig, R., Vykoukal, J., and Gascoyne, PP.R.C. (1995). Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. of National Academic Science, USA., 92, pp. 860-864.

    54. Markx, G.H., Dyda, PP.A., Pethig, R. (1996). Dielectrophoretic separation of bacteria using a conductivity gradient. Journal of Biotechnology, 51, pp. 175-180.

    55. Morgan, H., Hughes, M.P., and Green, N.G.. (1999). Separation of sub-micron bio-particles by dielectrophoresis. Biophysis Journal, 77, pp.516-525.

    56. Yang, J. et. al. (2000). Differential analysis of human leukocytes by Dielectrophoretic field-flow-fractionation. Biophysical Journal, 78, pp, 2680-2689.

    57. Morgan, H. and Green, N.G. (2003). AC electrokinetics: colloids and nanoparticles. Herts, UK: Research Studies Press.

    58. Hagedorn, R., Fuhr, G., Muller, T., and gimsa, J. (1992). Traveling wave dielectrophoretic of microparticles. Electrophoresis, 13, pp. 49-54.

    59. Muller, T., Gerardino, A., Schnelle, T., Shirley, S.G., Bordoni, F., Gasperis, G.D., Leoni, R., and Fuhr, G. (1996). Trapping of micrometer and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. Journal of Physics. D: Applied Physics, 29, pp. 340-349.

    60. Durr, M., Kentsch, J., Muller. T., Schnelle, T., and Steizle, M. (2003). Microdevices for manipulation and accumlation of micro-and nanoparticles by Dielectrophoresis. Electrophoresis, 24, pp. 722-731.

    61. Wang, X., Vykoukal, J., Becker, F., and Gascoyne, P. (1998). Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophysical Journal, 74(5), pp. 2689-2701.

    62. Wang, X., Wang, XB., Becker, and F., Gascoyne, P. (1996). A theoretical method of electrical field analysis for Dielectrophoretic electrode arrays using Green’s theorem. Journal of Physics. D: Appl. Phys., 29, 1649-1660.

    63. Altomare, L., Borgatti, M., Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R., and Gambari, R. (2003). Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnology and Bioengineering, 82(4), 474-479.

    64. Holmes, D., Green N.G., and Morgan, H. (2003). Microdevices for Dielectrophoretic flow-through cell separation. IEEE Engineering in Medicine and Biology Magazine, Nov./Dec., pp. 85-90.

    65. Green, N.G., Morgan, H., (1997). Dielectrophoretic separation of nano-parrticle. Journal of Physics D: Appl. Phys. Vol. 30, pp. L41-L44

    66. Pethig, R., markx, G..H. (1997). Applications of Dielectrophoresis in biotechnology. TibTech, 15, pp. 426-432.

    67. Ramos, A., Morgan.H., Green, N.G., and Castellanos, A. (1999). The role of electrohydrodynamic manipulation and separation of particles. Journal of Electrostatics, 47, pp. 71-81.

    68. Ramos, A., Morgan, H., Green, N.G., and Gastellanos, A. (1998). AC electrokinetics: a review of forces in microelectrode structures. Journal of Physics. D: Appl. Phys.,31,2338-2353.

    69. Gastellanos, A., Ramos, A., Gonzalez, A., Green, N.G. and Morgan, H. (2003). Electrohydrodynamics and Dielectrophoresis in microsystems: scaling laws. Journal of Physics. D: Appl. Phys., 36, 2548-2597.

    70. Green, N.G., Ramos, A., Morgan, H. (2002). Numerical solution of the Dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. Journal of Electrostatics, 56, 235-254.

    71. Green, Nj.G., Ramos, A., Gonzalez, A., Castellanos, A., and Morgan, H. (2000).Electric field induced fluid flow on microelectrodes: the effect of illumination. Journal of Physics. D: Appl. Phys., 33(2), pp. L13-L17.

    72. Chan, K.L., Morgan, H., Morgan, E., Cameron, I.T., and Thomas, M.R. (2000). Measurements of the dielectric properties of peripheral blood mononuclear cells and trophoblast cells using AC electrokinetic techniques. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1500 (3), pp. 313-322.

    73. Green, N.G., Ramos, A., Morgan, H. (2000). AC electrokinetics: a survey of sub-micrometre particle dynamics. Journal of Physics. D: Appl. Phys.,33, pp. 632-641.

    74. Nieuwenhuis, J.H., Vellekoop, M.J. (2004). Simulation study of dielectrophoretic particle sorters. Sensors and Actuators B, 103, pp. 331-338.

    75. Chou, C., et. al. (2002). Electrodeless Dielectrophoresis of single-and double-stranded DNA. Biophysical Journal, 83, pp. 2170-2179.

    76. Markx, G.H., Dyda, P.A., Pethig, R. (1996). Dielectrophoretic separation of bacteria using a conductivity gradient. Journal of Biotechnology, 51, pp. 175-180.

    77. Markx, G. H., Pethig, R., Rousselet, J. (1997). The Dielectrophoretic levitation of latex beads, with reference to field-flow fracationation. Journal of Physics. D: Appl. Phys., 30, pp. 2470-2477.

    78. Pohl, H.A. (1978). Dielectrophoresis. Combridge University Press.

    79. Jones, T. (1995). Electromechanics of particles. Cambridge University Press.

    80. Arnold, W.M., Zimmerman, U (1982). Rotational-field-induced rotation and measurement of the membrance capacitance of single mesophyll of arena sativa. Z. Naturforsch Vol. 37c, pp. 908-915

    81. Mischeletal, M., Voss, A. and Pohl, H. A. (1982). Cellular spin resonance in rotating electric field. J. Biol. Phys., 10, pp. 223-226.

    82. Masude, S., Washizu, M. and Kawabata, I. (1988). Traveling-wave driven microfabricated electrohydrodynamic pumps for liquid. IEEE Trans. Ind. Appl. 24, pp. 217-223.

    82. Cummings, E.B. (2003). Streaming Dielectrophoresis for continuous-flow microfluidic devices. IEEE Engineering in Medicine and Biology Magazine, Nov./Dec., pp. 75-84.

    83. Yuan, S.W. (1982). Foundations of Fluid Mechanics. Prentice-Hall, Inc.

    84. Voldman, J., Braff, R.A., Toner, M., Gray, M.L., and Schmidt, M.A. (2001). Holding forces of single-particle dielectrophoretic traps. Biophysical Journal, 80, pp. 531-541.

    85. Gorre-Talini, L., Spatz, J.PP., Silberzan, PP. (1998). Dielectrophoretic ratchets. CHAOS, 3(8), pp. 650-656.

    86. Suzuki, H., Ho, C., (2004). A chaotic mixer for magnetic bead-based micro cell sorter. Journal of Microelectromechanical System, Vol. 13, NO. 5, pp779-790

    87. Leu, T. S., Kuo, Y. J., Wang, B. P. (2006) Optimal Design of the electrodes in Dielectrophoretic Flow Sorter. Conf. The 2nd International Meeting on microsensors and Microsystems

    下載圖示 校內:立即公開
    校外:2006-03-28公開
    QR CODE