簡易檢索 / 詳目顯示

研究生: 黃泯舜
Huang, Min-Shun
論文名稱: 提升氮化銦鎵太陽能電池轉換效率之研究
Improved Conversion Efficiency of InGaN/Sapphire-based Solar Cells
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 三五族化合物半導體太陽能電池氮化鎵銦超晶格緩衝層極化效應
外文關鍵詞: Solar cell, InGaN, Superlattice, Buffer layer, Polarization
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對提升三五族化合物半導體AlGaInN太陽能電池效率的研究與製作,探討其對太陽能電池元件操作表現的影響,並藉由改變緩衝層(buffer layer)的條件,改善氮化鎵材料成長於藍寶石基板的材料品質。緩衝層厚度為4 μm且主動層為GaN/InGaN(厚度分別為40 Å/30 Å, 28對超晶格)的元件較緩衝層厚度為2 μm時有較佳的光電轉換特性,其JSC、VOC、FF以及η分別為1.03 mA/cm2、1.86 V、43%以及0.82%。主要是因為緩衝層為厚度2 μm的薄膜品質不佳,過多的漏電路徑造成VOC偏低,缺陷所形成的載子殺手(carrier killer)會造成光電流的損耗。當AlGaN/InGaN作為元件主動層時,由於AlGaN/InGaN產生的自發極化(Spontaneous polarization, PSP)與壓電極化(Piezoelectric polarization, PPZ)現象所營造的內建電場比GaN/InGaN來得大,使得照光所產生的電子電洞對可順利的跨越主動層而導到外部電路,因而有效提升太陽能電池元件的操作表現。主動層為Al0.14Ga0.86N/In0.21Ga0.79N(厚度分別為40 Å/30 Å, 14對超晶格)的元件有最佳的操作表現,其JSC、VOC、FF以及η分別為0.84 mA/cm2、2.10、66%以及1.16%。

    This study focuses on enhancing the power conversion efficiency of AlGaInN-based photovoltaic (PV) devices of group III-nitride compound semiconductors. PV structures of p-GaN/i-layer/n+-GaN were grown on GaN/sapphire template substrates using a metalorganic vapor-phase epitaxy reactor. PV devices with the GaN/InGaN (40 Å/30 Å for 28 pairs) superlattice (SL) i-layer grown on 4 μm-thick u-GaN template substrates exhibited better performance than devices grown on 2 μm-thick substrates. This can be attributed to the fact that the 4 μm u-GaN material exhibited less TD density than did the 2 μm u-GaN material; hence, the leakage in the current paths was reduced. Sample B4 with the GaN/InGaN (40 Å/30 Å for 28 pairs) SL active i-layer exhibited a short-current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η) of 1.03 mA/cm2, 1.86 V, 43%, and 0.82%, respectively.
    As the AlGaN/InGaN SL absorption layers were applied to the active i-layers, the spontaneous and piezoelectric polarization in AlGaN/InGaN heterostructures were both larger than that in the GaN/InGaN heterostructures. The improved polarization can enhance the extraction of photogenerated carriers from the active layers before they were recombined or scattered by TD defects. Sample D1 with the Al0.14Ga0.86N/In0.21Ga0.79N (40 Å/30 Å for 14 pairs) SL active i-layer exhibited JSC, VOC, FF, and η of 0.84 mA/cm2, 2.10 V, 66 %, and 1.16 %, respectively.

    摘要 1 ABSTRACT II 誌謝 III 目錄 IV 表目錄 IV 圖目錄 IV 第一章 序論 1 1.1前言 1 1.2研究動機與目的 2 參考資料 6 第二章 原理及量測方法 7 2.1太陽能電池原理 7 2.1.1太陽能電池的光電效應 7 2.1.2太陽能電池等效電路模型 7 2.2太陽能電池效率量測 9 2.2.1太陽光頻譜 9 2.3太陽能電池效率相關參數 11 2.3.1短路電流(Short current,ISC) 11 2.3.2開路電壓(Open-circuit voltage,VOC) 11 2.3.3最大輸出功率(Maximum output power,PMAX)、最大輸出電流與最大輸出電壓 12 2.3.4填充因子(Fill factor,FF) 13 2.3.5功率轉換效率(Power conversion efficiency,η) 13 2.3.6串聯電阻與量測 13 2.3.7量子效率(Quantum efficiency)與吸收係數(Absorption coefficient) 14 2.4太陽能電池的材料與設計 15 2.4.1p-n接面與p-i-n接面 15 2.4.2吸收層設計 17 參考文獻 23 第三章 實驗方法與製程步驟 25 3.1儀器設備 25 3.2氮化鋁鎵銦太陽能電池元件製作 29 3.2.1超晶格氮化鎵銦太陽能電池結構 29 3.2.2AlGaN/InGaN超晶格主動層結構設計 30 3.2.3試片清潔 31 3.2.4製程步驟 32 參考資料 40 第四章 實驗結果與分析討論 41 4.1 GaN/InGaN超晶格主動層之氮化鎵銦太陽能電池研究 41 4.1.1 X-光繞射(X-ray diffraction, XRD)頻譜分析 42 4.1.2 太陽能電池元件光電轉換特性分析 43 4.1.3 外部量子效率(External quantum efficiency, EQE)分析 44 4.2 AlGaN/InGaN超晶格主動層之氮化鋁鎵銦太陽能電池研究 46 4.2.1 X-光繞射(X-ray diffraction, XRD)頻譜分析 46 4.2.2 光激螢光(Photoluminescence, PL)頻譜分析 47 4.2.3 太陽能電池元件光電轉換特性分析 48 4.2.4 外部量子效率(external quantum efficiency, EQE)分析 50 參考資料 61 第五章 結論與未來展望 63 5.1結論 63 5.2未來展望 64 APPENDIX 65 水浴法成長氧化鋅奈米柱於氮化鎵表面 65 參考文獻 71

    第一章參考資料
    【1】王啟秀, 孔祥科, 左玉婷, 全球能源產業趨勢研究—以台灣太陽能光電產業為例, Web Journal of Chinese Management Review, vol. 11, no. 3, Aug 2008
    【2】楊素華, 蔡泰成, 科學發展第390期,50~55頁,2005.
    【3】J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71 (18), 3 November 1997
    【4】施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
    【5】O.Jani, I.Ferguson, C.Honsberg,and S.Kurtz, “Design and characterization of GaN/InGaN solar cells”, Appl. Phys. Lett., vol. 91, no. 13, pp. 132 117-1–132 117-3, Sep. 2007.
    【6】J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization energy in group III nitrides”, Phys. Rev. B 71, 161201(R), 2005.
    【7】S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode. The Complete Story”, Springer, 2000.
    第二章參考資料
    【1】紀國鍾, 蘇炎坤, 光電半導體技術手冊, 台萬電子材料與元件協會出版, 2002.
    【2】楊智喬, 三五族太陽能電池製作與分析Fabrications and Characteristics of Group III/V Solar Cells, 國立成功大學碩士論文,2007.
    【3】“Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference cells Under Simulated Sunlight”, American Society for Testing and Materials Committee, E948-95.
    【4】S. M. Sze, “Physics of Semiconductor Devices”, Third Edition, WILEY, 2000.
    【5】O.Jani, I.Ferguson, C.Honsberg,and S.Kurtz, “Design and characterization of GaN/InGaN solar cells”, Appl. Phys. Lett., vol. 91, no. 13, pp. 132 117-1–132 117-3, Sep. 2007.
    【6】曾衍彰, 太陽能基礎技術, 經濟部工業局, 2005.
    【7】Donald A. Neamen, “Semiconductor Physics & Devices”, Third Edition, Mc Graw Hill, 2003.
    【8】Jenny Nelson, “Physics of Solar Cells”, Imperial College Press, 2003.
    【9】Jinn-Kong Sheu, Chih-Ciao Yang, Shang-Ju Tu, Kuo-Hua Chang, Ming-Lun Lee, Wei-Chih Lai, and Li-Chi Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers”, IEEE Electron Device Letter , vol. 30, no. 3, March 2009.
    第三章參考資料
    【1】Jenny Nelson, Physics of Solar Cells, Imperial College Press, 2003
    【2】N. A. El-Masry, E. L. Piner, S. X. Liu, and S.M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 72, no. 1, pp. 40–42, January 1998.
    【3】J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers”, IEEE Electron Device Letters, vol. 30, no. 3, pp. 225-227, March 2009.
    第四章參考資料
    【1】S. Nakamura, S. Pearton and G. Fasol, The Blue Laser Diode. The Complete Story, Springer, 2000.
    【2】Jenny Nelson, Physics of Solar Cells, Imperial College Press, 2003.
    【3】A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices”, J. Appl. Phys. 81, 6332 (1997).
    【4】J. K. Sheu, M. L. Lee and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes”, Appl. Phys. Lett. 86, 052103 (2005).
    【5】K Kusakabe, A Kikuchi, K Kishino, “Characterization of Overgrown GaN Layers on Nano-Colums Grown by Rf-Molecular Beam Epitaxy”, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L192-L194.
    【6】V. Fiorentini, F. Bernardini and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures”, Appl. Phys. Lett. 80, 1204 (2002).
    【7】S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han, and R. M. Biefeld, “The band-gap bowing of Alx Ga1-x N alloys”, Appl. Phys. Lett. 74, 3344 (1999).
    【8】O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys. 85, 3222 (1999).
    APPENDIX參考資料
    [1] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem. B, 105, 3350-3352, 2001.

    無法下載圖示 校內:2013-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE