| 研究生: |
黃振明 Huang, Jenn-Ming |
|---|---|
| 論文名稱: |
氫氧基磷灰石之晶粒大小對骨母細胞及纖維母細胞增殖的影響 Effects of Hydroxyapatite Grain Size on Proliferation of Osteoblasts and Fibroblasts |
| 指導教授: |
王清正
Wnag, Ching-Cheng 李澤民 Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 氫氧基磷灰石 、晶粒大小 、骨母細胞 、纖維母細胞 、細胞增殖 |
| 外文關鍵詞: | grain size, Hydroxyapatite, osteoblast, fibroblast, cell proliferation |
| 相關次數: | 點閱:175 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是以不同晶粒大小的氫氧基磷灰石(HA)塊材做為基材,探討人類類骨母細胞(HOS)與人類纖維母細胞(HSF)初期之增殖情況。本實驗以濕式法合成HA粉末,藉由不同的製備參數:滴定速率、滴定溫度、熟化時間及不同塊材燒結溫度,並透過X光繞射(XRD)鑑定其結構及計算晶粒大小,以了解影響晶粒大小之因素。此外,利用高解析分析電子顯微鏡(HR-AEM)觀測粉末型態和利用表面粗度測定儀量測塊材表面粗糙度。實驗結果顯示,在滴定溫度25℃和80℃下製備出的HA之晶粒大小分別為11和22nm,HA塊材經燒結400、800和1200℃後,晶粒大小分別為20、32和47nm。利用MTT測量細胞增殖情況,藉以評估細胞相容性,實驗結果發現晶粒愈大之HA塊材,HOS細胞增殖情況愈好;另一方面,HSF細胞在不同晶粒大小的HA塊材上,經一、三天培養後各有不同的增殖情形,且HA基材對於HSF細胞之增殖似乎有抑制的作用,因此,綜觀上述結論,HA塊材之晶粒大小可能會影響此兩種細胞的增殖表現,也因為不同的細胞種類對於基材的反應不同,造成細胞增殖上的差異。
The purpose of the study is to investigate the influence of hydroxyapatite grain size on initial proliferation of human osteoblast-like cells (HOS) and human skin fibroblasts (HSF). In this study, HA powders were prepared using wet methods. Reactant addition rate, reaction temperatures, aging time and sintering time would be changed respectively throughout the reactant process and examined using X-ray diffraction (XRD) to identify the phase and estimate the grain size. Besides, the morphology of HA powders was displayed by Ultrahigh Resolution Analytical Electron Microscope (HR-AEM) and the surface roughness of HA bulks was evaluated by Surface Roughness Measurement Instrument. The results revealed the grain size of HA powders reacting at temperature 25 and 80℃ were 11 and 22 nm, respectively. The average grain size of HA bulks increased to 20, 32 and 47 nm when sintering at 400, 800 and 1200℃, respectively. Further, cell proliferation was measured by the Methylthiazoletetrazolium (MTT) test. The results of the study provided that HOS proliferation was significantly greater on the larger grain size of HA bulks than the smaller ones. On the other hand, HSF cells showed disparate cell proliferation on different grain size of HA bulks after culturing 1 and 3 days; moreover, HA seemed to have the function of restraining the proliferation of HSF cells. Therefore, it has been observed that HA grain size may affect the proliferation of HOS and HSF cells. Also, the cell types react distinctively according to various materials, and thus caused a variety of cell proliferation.
1.Kokubo T, Kim HM, Kawashita M: Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24:2161-2175.
2.Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ: Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 2004, 25:2095-2103.
3.Bharati S, Basu D: Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. Bull Mater Sci 2005, 28(6):617–621.
4.Wang M: Bioactive materials and processing. Biomaterials and Tissue Engineering 2004, editor: D. Shi, Berlin Heidelberg: Springer, p. 1–82.
5.Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000, 51:475-483.
6.Evis Z, Sato M, Webster TJ: Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. J Biomed Mater Res A 2006, 78:500-507.
7.Ravaglioli A, Krajewski A: Bioceramics. Chapman & Hall, London 1992.
8.Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 2001, 22:1327-1333.
9.Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB: Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 2004, 25:2111-2121.
10.Porter AE: Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 2006.
11.Wei M, Evans JH, Bostrom T, Grondahl L: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med 2003, 14:311-320.
12.He Z, Ma J, Wang C: Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials 2005, 26:1613-1621.
13.Christenson RH: Biochemical markers of bone metabolism: an overview. Clin Biochem 1997, 30:573-593.
14.Stein GS, Lian JB, Owen TA: Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. Faseb J 1990, 4:3111-3123.
15.Aubin JE, Heersche JM: Osteoblastic cell lineage. Cellular and molecular biology of bone. New York academic Press 1993:1-45.
16.Schmidt C, Ignatius AA, Claes LE: Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J Biomed Mater Res 2001, 54:209-215.
17.Baxter LC, Frauchiger V, Textor M, ap Gwynn I, Richards RG: Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces. Eur Cell Mater 2002, 4:1-17.
18.Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropreso S, Condo SG: Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol Eng 2002, 19:119-124.
19.Hong JY, Kim YJ, Lee HW, Lee WK, Ko JS, Kim HM: Osteoblastic cell response to thin film of poorly crystalline calcium phosphate apatite formed at low temperatures. Biomaterials 2003, 24:2977-2984.
20.Jun IK, Jang JH, Kim HW, Kim HE: Recombinant osteopontin fragment coating on hydroxyapatite for enhanced osteoblast-like cell responses. J Mater Sci Mater Med 2005, 40:2891 – 2895.
21.Kumar R, Prakash KH, Cheang P, Khor KA: Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 2004, 20:5196-5200.
22.Kothapalli CR, Wei M, Legeros RZ, Shaw MT: Influence of temperature and aging time on HA synthesized by the hydrothermal method. J Mater Sci Mater Med 2005, 16:441-446.
23.Gu YW, Loh NH, Kho KA, Tor SB, Cheang P: Spark plasma sintering of hydroxyapatite powders. Biomaterials 2002, 23:37-43.
24.Wang C, Duana Y, Markovicc B, Barbarad J, Howlettd CR, Zhanga X, Zreiqatd H: Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004, 25:2949–2956.
25.Rouahi M, Gallet O, Champion E, Dentzer J, Hardouin P, Anselme K: Influence of hydroxyapatite microstructure on human bone cell response. J Biomed Mater Res A 2006, 78:222-235.
26.Schaffner P, Dard MM: Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 2003, 60:119-132.