簡易檢索 / 詳目顯示

研究生: 黃茉緣
Huynh, Thi-My-Duyen
論文名稱: 低維奈米材料的可調量子現象和電子特性:從石墨烯奈米帶到過渡金屬硫屬化物和利佈晶格
Tunable quantum phenomena and electronic properties of low-dimensional nanomaterials: from graphene nanoribbons to transition metal chalcogenides and Lieb lattices
指導教授: 劉明豪
Liu, Ming-Hao
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 139
中文關鍵詞: 石墨烯基材料 (GBMs)奈米帶 過渡金屬硫屬化物 (TMCs) 利佈晶格 可調電子特性 量子現象
外文關鍵詞: graphene-based materials (GBMs) , nanoribbons , transition metal chalcogenides (TMCs) , Lieb lattices , tunable electronic properties , quantum phenomena
ORCID: 0000-0003-4236-2969
ResearchGate: https://www.researchgate.net/profile/Duyen-Huynh-12?ev=hdr_xprf
相關次數: 點閱:31下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低維度材料的探索持續開拓奈米電子學, 光電子學和量子輸運領域的新前沿. 石墨烯和鍺烯奈米帶具有尺寸和邊緣相關的電子和磁性可調性,克服了其二維母晶格的固有限制。鹼金屬修飾引入了電荷轉移和軌道雜化,實現了從半導體到金屬行為的轉變,並有望應用於鋰離子電池和鈉離子電池等儲能領域.同樣,過渡金屬硫族化合物 (TMCs),包括 GaSe, MoS2, 和 HfX2 (X = S, Se, 或 Te), 表現出可調的能帶結構和相位相關特性,可透過氫化, 應變和厚度調整進行精確調控. 這些材料展現出範霍夫奇點 (vHs), 間接到直接帶隙躍遷和潛在的超導性等關鍵特性,使其非常適合裝置整合. 作為這些材料體系的補充,利布晶格可作為研究平帶局域化和狄拉克物理的模型. 它獨特的平帶與狄拉克點相交,並具有錐形色散,這使得諸如超克萊因隧道 (SKT) 等對原子間跳躍結構敏感的奇異傳輸現象成為可能. 這些材料平台共同為在低維度空間中研究和設計量子現象提供了多功能的基礎.

    The exploration of low-dimensional materials continues to open new frontiers in nanoelectronics, optoelectronics, and quantum transport. Nanoribbons of graphene and germanene offer size- and edge-dependent tunability of electronic and magnetic properties, overcoming the intrinsic limitations of their 2D parent lattices. Their modifications with alkali metals introduce charge transfer and orbital hybridization, enabling transitions from semiconducting to metallic behavior and suggesting potential for energy storage applications such as lithium- and sodium-ion batteries. Similarly, transition metal chalcogenides (TMCs), including GaSe, MoS2, and HfX2 (X = S, Se, or Te), exhibit tunable band structures and phase-dependent properties, which can be precisely engineered through hydrogenation, strain, and thickness adjustment. These materials demonstrate critical features such as van Hove singularities (vHs), indirect-to-direct band gap transitions, and potential superconductivity, making them highly suitable for device integration. Complementing these material systems, the Lieb lattice serves as a model for studying flat-band localization and Dirac physics. Its unique combination of a flat band intersecting the Dirac point and conical dispersions enables exotic transport phenomena such as super Klein tunneling (SKT), sensitive to interatomic hopping configurations. Together, these material platforms present a versatile foundation for investigating and engineering quantum phenomena in reduced dimensions.

    Abstract i Acknowledgment ii List of figures v List of tables x Abbreviations xi CHAPTER 1. INTRODUCTION 1 1.1. Graphene-based systems 3 1.2. Transition Metal Chalcogenide systems 9 1.3. Lieb lattices 14 1.4. Synthesis and computations 16 1.4.1. Synthesis, realization, and measurement 16 1.4.2. Computational framework 18 CHAPTER 2. NANORIBBONS OF GRAPHENE AND GERMANENE, AND THEIR ALKALI ATOMIC MODIFICATIONS 23 2.1. Reduced dimensionality in graphene-based materials 23 2.2. Monolayer nanoribbons of graphene and germanene 26 2.2.1. Graphene nanoribbons 26 2.2.2. Germanene nanoribbons 30 2.3. Adsorbed germanene zigzag nanoribbons 33 2.4. Bilayer graphene nanoribbons 36 2.5. Alkali-intercalated bilayer graphene nanoribbons 43 CHAPTER 3. TRANSITION METAL CHALCOGENIDE SYSTEMS, HFX2 (X = S, SE, OR TE), MOS2, GASE AND BEYOND 50 3.1. GaSe semiconductors 50 3.1.1. Polymorphs, bulk and monolayer 51 3.1.2. Phase transition 56 3.1.3. Hydrogen functionalized GaSe 59 3.2. MoS2 monolayer and nanoribbons 66 3.3. HfX2 (X = S, Se, or Te) systems 72 3.3.1. Bulk and monolayer systems 72 3.3.2. Thickness dependence 76 3.3.3. HfTe2 semimetal 79 3.4. Distorted phases of TMDs 81 CHAPTER 4. INTRODUCTION TO THE LIEB LATTICES AND THEIR ELECTRONIC TRANSPORT PROPERTIES 86 4.1. Model and main features 87 4.1.1. DFT and TBM Model 87 4.1.2. Electronic properties 89 4.2. Transport properties 92 4.2.1. Super Klein tunneling 93 4.2.2. Band gap opening 95 4.3. Inter hopping effect 99 CHAPTER 5. CONCLUSIONS 103 Future work 111 References 112 Appendices a 1. Linear optical property a 2. Boltzmann transport in VASP a 3. Publication c

    1. A. Gupta, T. Sakthivel and S. Seal, Progress in Materials Science 73, 44-126 (2015).
    2. Z. L. Shaw, S. Kuriakose, S. Cheeseman, M. D. Dickey, J. Genzer, A. J. Christofferson, R. J. Crawford, C. F. McConville, J. Chapman, V. K. Truong, A. Elbourne and S. Walia, Nature Communications 12 (1) (2021).
    3. Q. Tang and Z. Zhou, Progress in Materials Science 58 (8), 1244-1315 (2013).
    4. A. Celis, M. N. Nair, A. Taleb-Ibrahimi, E. H. Conrad, C. Berger, W. A. de Heer and A. Tejeda, Journal of Physics D-Applied Physics 49 (14) (2016).
    5. Z. S. Geng, B. Hähnlein, R. Granzner, M. Auge, A. A. Lebedev, V. Y. Davydov, M. Kittler, J. Pezoldt and F. Schwierz, Annalen Der Physik 529 (11) (2017).
    6. A. K. Nishad and R. Sharma, Ieee Journal of the Electron Devices Society 4 (6), 485-489 (2016).
    7. M. A. I. Shuvo, M. A. R. Khan, H. Karim, P. Morton, T. Wilson and Y. R. Lin, Acs Applied Materials & Interfaces 5 (16), 7881-7885 (2013).
    8. T. Tong, M. M. Zhang, W. F. Chen, X. Q. Huo, F. H. Xu, H. C. Yan, C. Lai, W. J. Wang, S. Y. Hu, L. Qin and D. L. Huang, Coordination Chemistry Reviews 500 (2024).
    9. Y. H. Ng, S. Ikeda, M. Matsumura and R. Amal, Energy & Environmental Science 5 (11), 9307-9318 (2012).
    10. P. Avouris, Z. H. Chen and V. Perebeinos, Nature Nanotechnology 2 (10), 605-615 (2007).
    11. L. Torrisi, L. Silipigni, G. Salvato, M. Cutroneo and A. Torrisi, Radiation Effects and Defects in Solids 177 (11-12), 1151-1165 (2022).
    12. J. Gaidukevic and J. Barkauskas, Crystals 14 (9) (2024).
    13. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angewandte Chemie-International Edition 48 (42), 7752-7777 (2009).
    14. Y. Kim, W. J. Woo, D. Kim, S. Lee, S. M. Chung, J. Park and H. Kim, Advanced Materials 33 (47) (2021).
    15. S. Palchoudhury, K. Ramasamy, J. C. Han, P. Chen and A. Gupta, Nanoscale Advances 5 (10), 2724-2742 (2023).
    16. V. Jakubsky and K. Zelaya, Journal of Physics-Condensed Matter 35 (2) (2023).
    17. J. Li, H. M. Zeng, Z. W. Zeng, Y. Y. Zeng and T. Xie, Acs Biomaterials Science & Engineering 7 (12), 5363-5396 (2021).
    18. X. W. Yu, H. H. Cheng, M. Zhang, Y. Zhao, L. T. Qu and G. Q. Shi, Nature Reviews Materials 2 (9) (2017).
    19. X. Huang, Z. Y. Yin, S. X. Wu, X. Y. Qi, Q. Y. He, Q. C. Zhang, Q. Y. Yan, F. Boey and H. Zhang, Small 7 (14), 1876-1902 (2011).
    20. S. Rathinavel, K. Priyadharshini and D. Panda, Materials Science and Engineering B-Advanced Functional Solid-State Materials 268 (2021).
    21. R. S. K. Houtsma, J. de la Rie and M. Stöhr, Chemical Society Reviews 50 (11), 6541-6568 (2021).
    22. M. A. Al Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik and M. Naebe, Nanomaterials 11 (9) (2021).
    23. F. Giannazzo, S. Sonde and V. Raineri, Electronic Properties of Graphene Probed at the Nanoscale. (2011).
    24. N. M. R. Peres, Vacuum 83 (10), 1248-1252 (2009).
    25. T. Ando, Npg Asia Materials 1 (1), 17-21 (2009).
    26. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Reviews of Modern Physics 81 (1), 109-162 (2009).
    27. J. Xu, G. W. Yuan, Q. Zhu, J. W. Wang, S. Tang and L. B. Gao, Acs Nano 12 (5), 4529-4535 (2018).
    28. Y. J. Wei and R. G. Yang, National Science Review 6 (2), 324-348 (2019).
    29. S. H. Guo, S. J. Chen, A. Nkansah, A. Zehri, M. Murugesan, Y. Zhang, Y. Zhang, C. Yu, Y. F. Fu, M. Enmark, J. Chen, X. F. Wu, W. Yu and J. H. Liu, 2d Materials 10 (1) (2023).
    30. P. Vogt, Beilstein Journal of Nanotechnology 9, 2665-2667 (2018).
    31. Z. Y. Ni, Q. H. Liu, K. C. Tang, J. X. Zheng, J. Zhou, R. Qin, Z. X. Gao, D. P. Yu and J. Lu, Nano Letters 12 (1), 113-118 (2012).
    32. J. J. Zhu, A. Chroneos and U. Schwingenschlögl, Nanoscale 8 (13), 7272-7277 (2016).
    33. R. Chegel and S. Behzad, Scientific Reports 10 (1) (2020).
    34. L. Zhang, P. Bampoulis, A. N. Rudenko, Q. Yao, A. van Houselt, B. Poelsema, M. I. Katsnelson and H. J. W. Zandvliet, Physical Review Letters 116 (25) (2016).
    35. A. Nijamudheen, R. Bhattacharjee, S. Choudhury and A. Datta, Journal of Physical Chemistry C 119 (7), 3802-3809 (2015).
    36. A. P. Saunders, V. Chen, J. R. Wang, Q. T. Li, A. C. Johnson, A. S. McKeown-Green, H. J. Zeng, T. K. Mac, M. T. Trinh, T. F. Heinz, E. Pop and F. Liu, Small 20 (47) (2024).
    37. W. J. Bo, Y. Zou and J. G. Wang, Rsc Advances 11 (53), 33675-33691 (2021).
    38. Y. W. Son, M. L. Cohen and S. G. Louie, Physical Review Letters 97 (21) (2006).
    39. K. Wakabayashi, Y. Takane, M. Yamamoto and M. Sigrist, New Journal of Physics 11 (2009).
    40. A. Ambrosi, C. K. Chua, A. Bonanni and M. Pumera, Chemical Reviews 114 (14), 7150-7188 (2014).
    41. T. Nakanishi, M. Koshino and T. Ando, Physical Review B 82 (12) (2010).
    42. A. V. Orlov and I. A. Ovid'ko, Reviews on Advanced Materials Science 40 (3), 249-256 (2015).
    43. X. Y. Yi, M. Q. Long, A. H. Liu, M. J. Li and H. Xu, Journal of Applied Physics 123 (20) (2018).
    44. C. Chakravarty, B. Mandal and P. Sarkar, Physics Letters A 381 (4), 307-313 (2017).
    45. A. Keerthi, C. Sánchez-Sánchez, O. Deniz, P. Ruffieux, D. Schollmeyer, X. L. Feng, A. Narita, R. Fasel and K. Müllen, Chemistry-an Asian Journal 15 (22), 3807-3811 (2020).
    46. D. J. Klaassen, L. Eek, A. N. Rudenko, E. D. van 't Westende, C. Castenmiller, Z. G. Zhang, P. L. de Boeij, A. van Houselt, M. Ezawa, H. J. W. Zandvliet, C. M. Smith and P. Bampoulis, Nature Communications 16 (1) (2025).
    47. M. M. Monshi, S. M. Aghaei and I. Calizo, Rsc Advances 7 (31), 18900-18908 (2017).
    48. A. Goldstone and Q. L. Li, Applied Surface Science 612 (2023).
    49. Q. Pang, Y. Zhang, J. M. Zhang, V. Ji and K. W. Xu, Nanoscale 3 (10), 4330-4338 (2011).
    50. M. H. Wu, X. J. Wu and X. C. Zeng, Journal of Physical Chemistry C 114 (9), 3937-3944 (2010).
    51. X. H. Zhou and G. Yu, Advanced Materials 32 (6) (2020).
    52. C. X. Zhang, C. Y. He, L. Xue, K. W. Zhang, L. Z. Sun and J. X. Zhong, Organic Electronics 13 (11), 2494-2501 (2012).
    53. M. Singla and N. Jaggi, Materials Chemistry and Physics 273 (2021).
    54. B. Xiao, Y. H. Ding and C. C. Sun, Physical Chemistry Chemical Physics 13 (7), 2732-2737 (2011).
    55. Y. Y. Sung, H. Vejayan, C. J. Baddeley, N. V. Richardson, F. Grillo and R. Schaub, Acs Nano 16 (7), 10281-10291 (2022).
    56. G. Lee and K. Cho, Physical Review B 79 (16) (2009).
    57. A. D. Hernández-Nieves, B. Partoens and F. M. Peeters, Physical Review B 82 (16) (2010).
    58. W. L. Cui, T. Saito, P. Ayala, T. Pichler and L. Shi, Nanoscale 11 (32), 15253-15258 (2019).
    59. F. J. Owens, Molecular Physics 106 (21-23), 2441-2443 (2008).
    60. J. W. Liu, G. T. Yu, X. P. Shen, H. Zhang, H. Li, X. R. Huang and W. Chen, Physica E-Low-Dimensional Systems & Nanostructures 87, 27-36 (2017).
    61. A. S. Bhandari and A. Verma, Materials Express 9 (3), 273-280 (2019).
    62. A. I. Ayesh, Materials Chemistry and Physics 291 (2022).
    63. N. D. Hien, K. Mirabbaszadeh, M. Davoudiniya, B. D. Hoi, L. T. T. Phuong and M. Yarmohammadi, Scientific Reports 9 (2019).
    64. K. B. Ibrahim, T. A. Shifa, S. Zorzi, M. G. Sendeku, E. Moretti and A. Vomiero, Progress in Materials Science 144 (2024).
    65. H. T. Chin, M. Hofmann, S. Y. Huang, S. F. Yao, J. J. Lee, C. C. Chen, C. C. Ting and Y. P. Hsieh, Npj 2d Materials and Applications 5 (1) (2021).
    66. A. S. Sarkar and E. Stratakis, Advanced Science 7 (21) (2020).
    67. M. Y. Yu, M. Hilse, Q. H. Zhang, Y. C. Liu, Z. T. Y. Wang and S. Law, Acs Applied Nano Materials 7 (24), 28008-28026 (2024).
    68. M. B. P. Querne, A. C. Dias, A. Janotti, J. L. F. Da Silva and M. P. Lima, Journal of Physical Chemistry C 128 (29), 12164-12177 (2024).
    69. E. Zhang, Y. B. Jin, X. Yuan, W. Y. Wang, C. Zhang, L. Tang, S. S. Liu, P. Zhou, W. D. Hu and F. X. Xiu, Advanced Functional Materials 25 (26), 4076-4082 (2015).
    70. X. X. Wu, W. X. Guo, M. G. Li, C. Xiao, T. J. Ou, Z. J. Qiu and Y. W. Wang, Acs Applied Nano Materials 6 (13), 11327-11333 (2023).
    71. D. J. Late, B. Liu, J. J. Luo, A. M. Yan, H. Matte, M. Grayson, C. N. R. Rao and V. P. Dravid, Advanced Materials 24 (26), 3549-3554 (2012).
    72. Y. Lu and J. H. Warner, Acs Applied Electronic Materials 2 (7), 1777-1814 (2020).
    73. K. Kato and N. Umemura, Optics Letters 36 (5), 746-747 (2011).
    74. S. Ahmed, P. K. Cheng, J. P. Qiao, W. Gao, A. M. Saleque, M. N. A. Ivan, T. Wang, T. I. Alam, S. U. Hani, Z. L. Guo, S. F. Yu and Y. H. Tsang, Acs Nano (2022).
    75. K. A. Kokh, Y. M. Andreev, V. A. Svetlichnyi, G. V. Lanskii and A. E. Kokh, Crystal Research and Technology 46 (4), 327-330 (2011).
    76. U. K. Gautam, S. R. C. Vivekchand, A. Govindaraj, G. U. Kulkarni, N. R. Selvi and C. N. R. Rao, Journal of the American Chemical Society 127 (11), 3658-3659 (2005).
    77. T. Afaneh, A. Fryer, Y. Xin, R. H. Hyde, N. Kapuruge and H. R. Gutiérrez, Acs Applied Nano Materials 3 (8), 7879-7887 (2020).
    78. Y. Gutiérrez, G. Santos, M. M. Giangregorio, S. Dicorato, F. Palumbo, J. M. Saiz, F. Moreno and M. Losurdo, Optical Materials Express 11 (11), 3697-3705 (2021).
    79. V. F. Agekyan, A. Y. Serov and N. G. Filosofov, Physics of the Solid State 60 (6), 1223-1225 (2018).
    80. H. M. Wang, G. Z. Qin, J. Y. Yang, Z. Z. Qin, Y. G. Yao, Q. Wang and M. Hu, Journal of Applied Physics 125 (24) (2019).
    81. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, Nature Reviews Materials 2 (8) (2017).
    82. D. I. Bilc, D. Benea, V. Pop, P. Ghosez and M. J. Verstraete, Journal of Physical Chemistry C 125 (49), 27084-27097 (2021).
    83. C. Ataca, H. Sahin and S. Ciraci, Journal of Physical Chemistry C 116 (16), 8983-8999 (2012).
    84. S. Haldar, H. Vovusha, M. K. Yadav, O. Eriksson and B. Sanyal, Physical Review B 92 (23) (2015).
    85. R. T. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. F. Sun, T. E. Mallouk and M. Terrones, Accounts of Chemical Research 48 (3), 897-897 (2015).
    86. M. Chhowalla, D. Voiry, J. E. Yang, H. S. Shin and K. P. Loh, Mrs Bulletin 40 (7), 585-591 (2015).
    87. S. Park, C. Kim, S. O. Park, N. K. Oh, U. Kim, J. Lee, J. Seo, Y. Yang, H. Y. Lim, S. K. Kwak, G. Kim and H. Park, Advanced Materials 32 (33) (2020).
    88. S. Chae, S. S. Chae, M. Choi, H. M. Park, H. Chang, J. O. Lee and T. I. Lee, Nano Energy 56, 65-73 (2019).
    89. A. L. Friedman, A. T. Hanbicki, F. K. Perkins, G. G. Jernigan, J. C. Culbertson and P. M. Campbell, Scientific Reports 7 (2017).
    90. Z. C. Lai, Y. Yao, S. Y. Li, L. Ma, Q. H. Zhang, Y. Y. Ge, W. Zhai, B. L. Chi, B. Chen, L. J. Li, L. Wang, Z. J. Zheng, L. Gu, Y. H. Du and H. Zhang, Advanced Materials 34 (26) (2022).
    91. W. Zhao and F. Ding, Nanoscale 9 (6), 2301-2309 (2017).
    92. K. Leng, Z. X. Chen, X. X. Zhao, W. Tang, B. B. Tian, C. T. Nai, W. Zhou and K. P. Loh, Acs Nano 10 (10), 9208-9215 (2016).
    93. S. I. Yengejeh, J. X. Liu, S. A. Kazemi, W. Wen and Y. Wang, Acs Omega 5 (11), 5994-6002 (2020).
    94. R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky and M. Pumera, Chemical Communications 53 (21), 3054-3057 (2017).
    95. P. F. Cheng, K. Sun and Y. H. Hu, Rsc Advances 6 (70), 65691-65697 (2016).
    96. S. A. Yamusa, A. Shaari, N. A. M. Alsaif, I. M. Alsalamah, I. Isah and N. Rekik, Acs Omega (2022).
    97. H. Tang, B. Neupane, S. Neupane, S. Q. Ruan, N. K. Nepal and A. Ruzsinszky, Scientific Reports 12 (1) (2022).
    98. Z. D. Gerbi, Aip Advances 15 (2) (2025).
    99. C. Ataca, H. Sahin, E. Aktürk and S. Ciraci, Journal of Physical Chemistry C 115 (10), 3934-3941 (2011).
    100. W. Y. Zan, Z. H. Zhang, Y. Yang, X. J. Yao, S. D. Li and B. I. Yakobson, Nanotechnology 30 (7) (2019).
    101. H. Pan and Y. W. Zhang, Journal of Materials Chemistry 22 (15), 7280-7290 (2012).
    102. F. Tumino, C. Grazianetti, C. Martella, M. Ruggeri, V. Russo, A. Li Bassi, A. Molle and C. S. Casari, Journal of Physical Chemistry C 125 (17), 9479-9485 (2021).
    103. J. Li, S. Wang, Q. Jiang, H. J. Qian, S. K. Hu, H. Kang, C. Chen, X. Y. Zhan, A. B. Yu, S. W. Zhao, Y. H. Zhang, Z. Y. Chen, Y. P. Sui, S. Qiao, G. H. Yu, S. Peng, Z. Jin and X. Y. Liu, Small 17 (30) (2021).
    104. H. J. Du, X. Sun, X. G. Liu, X. J. Wu, J. F. Wang, M. Y. Tian, A. D. Zhao, Y. Luo, J. L. Yang, B. Wang and J. G. Hou, Nature Communications 7 (2016).
    105. G. Cantele and D. Ninno, Physical Review Materials 1 (1) (2017).
    106. Q. Y. Zhao, Y. H. Guo, K. Y. Si, Z. Y. Ren, J. T. Bai and X. L. Xu, Physica Status Solidi B-Basic Solid State Physics 254 (9) (2017).
    107. S. Mangelsen, P. G. Naumov, O. I. Barkalov, S. A. Medvedev, W. Schnelle, M. Bobnar, S. Mankovsky, S. Polesya, C. Näther, H. Ebert and W. Bensch, Physical Review B 96 (20) (2017).
    108. R. J. Toh, Z. Sofer and M. Pumera, Journal of Materials Chemistry A 4 (47), 18322-18334 (2016).
    109. S. Ahmed, Y. Y. Gan, A. M. Saleque, H. L. Wu, J. P. Qiao, M. N. A. Ivan, S. U. Hani, T. I. Alam, Q. Wen and Y. H. Tsang, Small Methods 8 (2) (2024).
    110. X. R. Nie, B. Q. Sun, H. Zhu, M. Zhang, D. H. Zhao, L. Chen, Q. Q. Sun and D. W. Zhang, Acs Applied Materials & Interfaces 9 (32), 26996-27003 (2017).
    111. M. Nita, B. Ostahie and A. Aldea, Physical Review B 87 (12) (2013).
    112. M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D. Vanmaekelbergh and I. Swart, Nature Physics 13 (7), 672-+ (2017).
    113. Y. Y. Zhang, S. J. Zhao, M. Polozij and T. Heine, Chemical Science 15 (15), 5757-5763 (2024).
    114. A. Mielke and H. Tasaki, Communications in Mathematical Physics 158 (2), 341-371 (1993).
    115. C. Weeks and M. Franz, Physical Review B 82 (8) (2010).
    116. S. Majumder, A. Meher, S. Moharana and K. H. Kim, Carbon 216 (2024).
    117. L. Martini, Z. P. Chen, N. Mishra, G. B. Barin, P. Fantuzzi, P. Ruffieux, R. Fasel, X. L. Feng, A. Narita, C. Coletti, K. Müllen and A. Candini, Carbon 146, 36-43 (2019).
    118. A. Narita, X. L. Feng and K. Müllen, Chemical Record 15 (1), 295-309 (2015).
    119. Y. C. Lin, R. Matsumoto, Q. N. Liu, P. Solís-Fernández, M. D. Siao, P. W. Chiu, H. Ago and K. Suenaga, Nature Communications 15 (1) (2024).
    120. T. Hartman, J. Sturala, J. Plutnar and Z. Sofer, Angewandte Chemie-International Edition 58 (46), 16517-16522 (2019).
    121. Y. Sun, Z. H. Ren, Z. Y. Zhao, F. Zhang and F. Xing, Acs Applied Nano Materials (2025).
    122. A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C. J. Zhang, H. C. Nerl, K. Rode, N. C. Berner, C. Downing, N. McEvoy, E. Muñoz, A. Harvey, Z. Gholamvand, G. S. Duesberg, J. N. Coleman and V. Nicolosi, Nanoscale 8 (22), 11698-11706 (2016).
    123. Y. J. Kwack, T. T. T. Can and W. S. Choi, Npj 2d Materials and Applications 5 (1) (2021).
    124. S. S. Karim, A. Sudais, M. S. Shah, S. Farrukh, S. Ali, M. Ahmed, Z. Salahuddin and X. F. Fan, Fuel 351 (2023).
    125. R. Y. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. X. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace and C. L. Hinkle, Acs Nano 9 (1), 474-480 (2015).
    126. Y. Bai, Y. B. Dou, L. H. Xie, W. Rutledge, J. R. Li and H. C. Zhou, Chemical Society Reviews 45 (8), 2327-2367 (2016).
    127. B. Cui, X. W. Zheng, J. F. Wang, D. S. Liu, S. J. Xie and B. Huang, Nature Communications 11 (1) (2020).
    128. W. Jiang, S. H. Zhang, Z. F. Wang, F. Liu and T. Low, Nano Letters 20 (3), 1959-1966 (2020).
    129. K. A. Simonov, N. A. Vinogradov, A. S. Vinogradov, A. V. Generalov, E. M. Zagrebina, N. Mårtensson, A. A. Cafolla, T. Carpy, J. P. Cunniffe and A. B. Preobrajenski, Journal of Physical Chemistry C 118 (23), 12532-12540 (2014).
    130. J. S. Chang, S. Kim, H. J. Sung, J. Yeon, K. J. Chang, X. Q. Li and S. Kim, Small 14 (47) (2018).
    131. H. Karakachian, T. T. N. Nguyen, J. Aprojanz, A. A. Zakharov, R. Yakimova, P. Rosenzweig, C. M. Polley, T. Balasubramanian, C. Tegenkamp, S. R. Power and U. Starke, Nature Communications 11 (1) (2020).
    132. K. A. Simonov, N. A. Vinogradov, A. S. Vinogradov, A. V. Generalov, G. I. Svirskiy, A. A. Cafolla, N. Mårtensson and A. B. Preobrajenski, Nano Research 9 (9), 2735-2746 (2016).
    133. F. Kampmann, N. Scheuschner, B. Terrés, D. Jörger, C. Stampfer and J. Maultzsch, Annalen Der Physik 529 (11) (2017).
    134. T. Kitao, M. W. A. MacLean, K. Nakata, M. Takayanagi, M. Nagaoka and T. Uemura, Journal of the American Chemical Society 142 (12), 5509-5514 (2020).
    135. L. Kesper, M. Schmitz, M. G. H. Schulte, U. Berges and C. Westphal, Applied Nanoscience 12 (7), 2151-2160 (2022).
    136. G. Hautier, A. Jain and S. P. Ong, Journal of Materials Science 47 (21), 7317-7340 (2012).
    137. T. van Mourik, M. Bühl and M. P. Gaigeot, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 372 (2011) (2014).
    138. P. Singh and M. K. Harbola, Oxford Open Materials Science 1 (1) (2021).
    139. N. Argaman and G. Makov, American Journal of Physics 68 (1), 69-79 (2000).
    140. H. Zhang, Y. Yang, D. S. Ren, L. Wang and X. M. He, Energy Storage Materials 36, 147-170 (2021).
    141. D. Zhang, C. Tan, W. Z. Zhang, W. J. Pan, Q. Wang and L. Li, Molecules 27 (3) (2022).
    142. I. Takahara and T. Mizoguchi, Physical Review Materials 5 (8) (2021).
    143. M. Zhang, X. H. Song, X. W. Ou and Y. B. Tang, Energy Storage Materials 16, 65-84 (2019).
    144. H. P. Zhao, J. G. Ren, X. M. He, J. J. Li, C. Y. Jiang and C. R. Wan, Solid State Sciences 10 (5), 612-617 (2008).
    145. H. A. Wilhelm and J. L'Heureux, Actualite Chimique, 19-22 (2006).
    146. S. Okada and T. Kobayashi, Japanese Journal of Applied Physics 48 (5) (2009).
    147. M. Pérez, J. Elías, M. Sosa and M. Vallejo, European Journal of Physics 43 (4) (2022).
    148. B. Lee, Y. Chen, F. Duerr, D. Mastrogiovanni, E. Garfunkel, E. Y. Andrei and V. Podzorov, Nano Letters 10 (7), 2427-2432 (2010).
    149. P. Avouris, Nano Letters 10 (11), 4285-4294 (2010).
    150. X. S. Dai, T. Shen, Y. Feng, B. Yang and H. C. Liu, Ferroelectrics 568 (1), 143-154 (2020).
    151. C. C. Liu, W. X. Feng and Y. G. Yao, Physical Review Letters 107 (7) (2011).
    152. A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A. N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M. I. Katsnelson and H. J. W. Zandvliet, Journal of Physics-Condensed Matter 27 (44) (2015).
    153. M. Ezawa, New Journal of Physics 14 (2012).
    154. T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Chemical Physics Letters 476 (4-6), 125-134 (2009).
    155. Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. C. Paulus, C.-J. Shih, M.-H. Ham, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, J. Kong, P. Jarillo-Herrero and M. S. Strano, Nature Chemistry 4 (9), 724-732 (2012).
    156. S. Agrawal, A. Srivastava, G. Kaushal and A. Srivastava, Ieee Transactions on Nanotechnology 21, 43-51 (2022).
    157. K. Xu and P. D. Ye, Applied Physics Letters 104 (16) (2014).
    158. J. Lawrence, P. Brandimarte, A. Berdonces-Layunta, M. S. G. Mohammed, A. Grewal, C. C. Leon, D. Sánchez-Portal and D. G. de Oteyza, Acs Nano 14 (4), 4499-4508 (2020).
    159. L. Yang, M. L. Cohen and S. G. Louie, Physical Review Letters 101 (18) (2008).
    160. C. C. Liu, H. Jiang and Y. G. Yao, Physical Review B 84 (19) (2011).
    161. M. M. Khatami, M. L. Van de Put and W. G. Vandenberghe, Physical Review B 104 (23) (2021).
    162. G. Henkelman, A. Arnaldsson and H. Jónsson, Computational Materials Science 36 (3), 354-360 (2006).
    163. W. Tang, E. Sanville and G. Henkelman, Journal of Physics-Condensed Matter 21 (8) (2009).
    164. S. S. Li, C. W. Zhang, W. X. Ji, F. Li, P. J. Wang, S. J. Hu, S. S. Yan and Y. S. Liu, Physical Chemistry Chemical Physics 16 (30), 15968-15978 (2014).
    165. L. Brey and H. A. Fertig, Physical Review B 73 (23) (2006).
    166. M. H. Oliveira, J. M. J. Lopes, T. Schumann, L. A. Galves, M. Ramsteiner, K. Berlin, A. Trampert and H. Riechert, Nature Communications 6 (2015).
    167. G. L. Wang, S. Wu, T. T. Zhang, P. Chen, X. B. Lu, S. P. Wang, D. M. Wang, K. Watanabe, T. Taniguchi, D. X. Shi, R. Yang and G. Y. Zhang, Applied Physics Letters 109 (5) (2016).
    168. L. T. D. Nguyen, D. K. Le, Q. T. Tran, T. B. T. Huynh, T. K. Q. Nguyen, T. K. L. Phan and T. T. Vu, Physica Status Solidi B-Basic Solid State Physics 260 (4) (2023).
    169. A. Sagar, E. J. H. Lee, K. Balasubramanian, M. Burghard and K. Kern, Nano Letters 9 (9), 3124-3128 (2009).
    170. P. Shi, T. Li, R. Zhang, X. Shen, X. B. Cheng, R. Xu, J. Q. Huang, X. R. Chen, H. Liu and Q. Zhang, Advanced Materials 31 (8) (2019).
    171. A. Tavana and M. R. Sahmani, Rsc Advances 6 (76), 72238-72245 (2016).
    172. T. Barker, A. Gray, M. P. Weir, J. S. Sharp, A. Kenton, Z. R. Kudrynskyi, H. Rostami and A. Patané, Npj Flexible Electronics 9 (1) (2025).
    173. A. Bassou, A. Rajira, M. El-Hattab, J. El Haskouri, S. Murcia-Mascaros, A. Almaggoussi and A. Abounadi, Micro and Nanostructures 163 (2022).
    174. S. Sorifi, P. Aggarwal, S. Kaushik and R. Singh, Acs Applied Electronic Materials 5 (1), 451-460 (2023).
    175. D. J. Terry, V. Zólyomi, M. Hamer, A. V. Tyurnina, D. G. Hopkinson, A. M. Rakowski, S. J. Magorrian, N. Clark, Y. M. Andreev, O. Kazakova, K. Novoselov, S. J. Haigh, V. I. Fal'ko and R. Gorbachev, 2d Materials 5 (4) (2018).
    176. Y. H. Tang, W. Xie, K. C. Mandal, J. A. McGuire and C. W. Lai, Physical Review Applied 4 (3) (2015).
    177. R. Behjatmanesh-Ardakani, Journal of Electronic Materials 53 (5), 2398-2409 (2024).
    178. Y. Gutierrez, M. M. Giangregorio, S. Dicorato, F. Palumbo and M. Losurdo, Frontiers in Chemistry 9 (2021).
    179. L. Ghalouci, B. Benbahi, S. Hiadsi, B. Abidri, G. Vergoten and F. Ghalouci, Computational Materials Science 67, 73-82 (2013).
    180. N. Curreli, M. Serri, M. I. Zappia, D. Spirito, G. Bianca, J. Buha, L. Najafi, Z. Sofer, R. Krahne, V. Pellegrini and F. Bonaccorso, Advanced Electronic Materials 7 (3) (2021).
    181. M. Al-Hattab, K. Limame, K. Rahmani, L. Moudou, M. Khenfouch, Y. Chrafih, J. Guerroum and O. Bajjou, Indian Journal of Physics 98 (14), 4933-4947 (2024).
    182. D. N. Basov, M. M. Fogler and F. J. G. de Abajo, Science 354 (6309) (2016).
    183. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nature Nanotechnology 7 (11), 699-712 (2012).
    184. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. W. Chen and M. Chhowalla, Acs Nano 6 (8), 7311-7317 (2012).
    185. Y. C. Lin, D. O. Dumcencon, Y. S. Huang and K. Suenaga, Nature Nanotechnology 9 (5), 391-396 (2014).
    186. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, Nature Physics 5 (6), 438-442 (2009).
    187. M. Z. Hasan and C. L. Kane, Reviews of Modern Physics 82 (4), 3045-3067 (2010).
    188. Y. Li, K. A. N. Duerloo, K. Wauson and E. J. Reed, Nature Communications 7 (2016).
    189. Z. Zhu, J. Guan and D. Tománek, Physical Review B 91 (16) (2015).
    190. X. L. Qi and S. C. Zhang, Reviews of Modern Physics 83 (4) (2011).
    191. S. W. Lovesey, Contemporary Physics 55 (4), 353-354 (2014).
    192. Y. Z. Nie, M. Rahman, D. W. Wang, C. Wang and G. H. Guo, Scientific Reports 5 (2015).
    193. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature 460 (7259), 1101-1105 (2009).
    194. P. Ruffieux, J. M. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. L. Feng, K. Müllen, C. A. Pignedoli and R. Fasel, Acs Nano 6 (8), 6930-6935 (2012).
    195. P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava and A. Yazdani, Nature 460 (7259), 1106-1109 (2009).
    196. A. E. Galashev and O. R. Rakhmanova, Physics-Uspekhi 57 (10), 970-989 (2014).
    197. A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri and F. Mauri, Physical Review B 82 (11) (2010).
    198. H. Jing, Chemical Physics 548 (2021).
    199. Q. Peng, J. Zhou, C. Si and Z. M. Sun, Journal of Alloys and Compounds 788, 1113-1118 (2019).
    200. W. C. Jiang, B. W. Li, X. M. Wang, G. Y. Chen, T. Chen, Y. Xiang, W. Xie, Y. M. Dai, X. Y. Zhu, H. Yang, J. Sun and H. H. Wen, Physical Review B 101 (12) (2020).
    201. C. Y. Zhong, Y. E. Xie, Y. P. Chen and S. B. Zhang, Carbon 99, 65-70 (2016).
    202. Y. Liu, Y. H. Liu, T. B. Ma and J. B. Luo, Materials 11 (5) (2018).
    203. G. Q. Wang, G. Zhao, J. F. Song and Q. J. Ding, Materials Today Communications 31 (2022).
    204. S. J. Maraan, B. M. Ilyas and A. M. E. Alfaidhi, International Journal of Quantum Chemistry 123 (4) (2023).
    205. N. Ghobadi, Physica E-Low-Dimensional Systems & Nanostructures 111, 158-166 (2019).
    206. S. Singh, C. Espejo and A. H. Romero, Physical Review B 98 (15) (2018).
    207. S. Lebègue and O. Eriksson, Physical Review B 79 (11) (2009).
    208. S. A. Fang, R. K. Defo, S. N. Shirodkar, S. Lieu, G. A. Tritsaris and E. Kaxiras, Physical Review B 92 (20) (2015).
    209. T. Eknapakul, P. D. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan and W. Meevasana, Nano Lett 14 (3), 1312-1316 (2014).
    210. K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys Rev Lett 105 (13), 136805 (2010).
    211. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao and D. Xiao, Physical Review B 88 (8) (2013).
    212. K. Lee, W. S. Yun and J. D. Lee, Physical Review B 91 (12) (2015).
    213. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh and H. Zhang, Nature Chemistry 5 (4), 263-275 (2013).
    214. H. T. Wang, H. T. Yuan, S. S. Hong, Y. B. Li and Y. Cui, Chemical Society Reviews 44 (9), 2664-2680 (2015).
    215. D. J. Late, B. Liu, H. Matte, V. P. Dravid and C. N. R. Rao, Acs Nano 6 (6), 5635-5641 (2012).
    216. T. Liu and Z. Liu, Advanced Healthcare Materials 7 (8) (2018).
    217. A. A. Tedstone, D. J. Lewis and P. O'Brien, Chemistry of Materials 28 (7), 1965-1974 (2016).
    218. W. J. Zhao, Z. Ghorannevis, L. Q. Chu, M. L. Toh, C. Kloc, P. H. Tan and G. Eda, Acs Nano 7 (1), 791-797 (2013).
    219. J. Kang, S. Tongay, J. Zhou, J. B. Li and J. Q. Wu, Applied Physics Letters 102 (1) (2013).
    220. Q. Y. Chen, M. Y. Liu, C. Cao and Y. He, Physica E-Low-Dimensional Systems & Nanostructures 112, 49-58 (2019).
    221. H. F. Wang, C. Tang and Q. Zhang, Nano Today 25, 27-37 (2019).
    222. N. Barnes, Nature Reviews Methods Primers 2 (1) (2022).
    223. Z. El Youbi, S. W. Jung, S. Mukherjee, M. Fanciulli, J. Schusser, O. Heckmann, C. Richter, J. Minár, K. Hricovini, M. D. Watson and C. Cacho, Physical Review B 101 (23) (2020).
    224. L. E. Correa, L. R. de Faria, R. S. Cardoso, N. Chaia, M. S. da Luz, M. S. Torikachvili and A. J. S. Machado, Journal of Crystal Growth 595 (2022).
    225. E. Xenogiannopoulou, D. Tsoutsou, P. Tsipas, S. Fragkos, S. Chaitoglou, N. Kelaidis and A. Dimoulas, Nanotechnology 33 (1) (2022).
    226. Y. Nakata, K. Sugawara, A. Chainani, K. Yamauchi, K. Nakayama, S. Souma, P. Y. Chuang, C. M. Cheng, T. Oguchi, K. Ueno, T. Takahashi and T. Sato, Physical Review Materials 3 (7) (2019).
    227. D. Voiry, A. Mohite and M. Chhowalla, Chemical Society Reviews 44 (9), 2702-2712 (2015).
    228. Y. Xiao, C. Y. Xiong, M. M. Chen, S. F. Wang, L. Fu and X. H. Zhang, Chemical Society Reviews 52 (4), 1215-1272 (2023).
    229. M. G. Zhang, L. Chen, L. Feng, H. H. Tuo, Y. Zhang, Q. Wei and P. F. Li, Chinese Physics B 32 (8) (2023).
    230. S. J. Tang, C. F. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. J. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. H. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. L. Chen, M. M. Ugeda, Z. Liu, X. M. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo and Z. X. Shen, Nature Physics 13 (7), 683-+ (2017).
    231. A. A. Soluyanov, D. Gresch, Z. J. Wang, Q. S. Wu, M. Troyer, X. Dai and B. A. Bernevig, Nature 527 (7579), 495-498 (2015).
    232. S. F. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava and P. Jarillo-Herrero, Science 359 (6371), 76-79 (2018).
    233. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong and R. J. Cava, Nature 514 (7521), 205-+ (2014).
    234. D. Rhodes, S. Das, Q. R. Zhang, B. Zeng, N. R. Pradhan, N. Kikugawa, E. Manousakis and L. Balicas, Physical Review B 92 (12) (2015).
    235. X. F. Qian, J. W. Liu, L. Fu and J. Li, Science 346 (6215), 1344-1347 (2014).
    236. K. Deng, G. L. Wan, P. Deng, K. N. Zhang, S. J. Ding, E. Y. Wang, M. Z. Yan, H. Q. Huang, H. Y. Zhang, Z. L. Xu, J. Denlinger, A. Fedorov, H. T. Yang, W. H. Duan, H. Yao, Y. Wu, S. S. Fan, H. J. Zhang, X. Chen and S. Y. Zhou, Nature Physics 12 (12), 1105-+ (2016).
    237. Y. Wu, D. X. Mou, N. H. Jo, K. W. Sun, L. N. Huang, S. L. Bud'ko, P. C. Canfield and A. Kaminski, Physical Review B 94 (12) (2016).
    238. J. Ryou, Y. S. Kim, K. C. Santosh and K. Cho, Scientific Reports 6 (2016).
    239. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnology 6 (3), 147-150 (2011).
    240. D. Jones, M. Mucha-Kruczynski, A. Ilie and L. Covaci, Nanoscale 17 (9), 5350-5362 (2025).
    241. W. Jiang, H. Q. Huang and F. Liu, Nature Communications 10 (2019).
    242. D. Román-Cortés, G. Fadic, C. Cid-Lara, D. Guzmán-Silva, B. Real and R. A. Vicencio, Scientific Reports 11 (1) (2021).
    243. H. F. Feng, C. Liu, S. Zhou, N. Gao, Q. Gao, J. C. Zhuang, X. Xu, Z. P. Hu, J. O. Wang, L. Chen, J. J. Zhao, S. X. Dou and Y. Du, Nano Letters 20 (4), 2537-2543 (2020).
    244. L. Fiorini, C. J. Terroso, F. A. L. de Souza, W. S. Paz and F. N. N. Pansini, Carbon 213 (2023).
    245. B. Yang, X. M. Zhang and M. W. Zhao, Nanoscale 9 (25), 8740-8746 (2017).
    246. J. P. Lang, H. Hanafi, J. Imbrock and C. Denz, Physical Review A 107 (2) (2023).
    247. W. X. Qiu, S. Li, J. H. Gao, Y. Zhou and F. C. Zhang, Physical Review B 94 (24) (2016).
    248. Y. Y. Zhang, S. J. Zhao, M. Polozij and T. Heine, Chemical Science 15 (15), 5757-5763 (2024).
    249. R. Wang, Q. Qiao, B. Wang, X. H. Ding and Y. F. Zhang, European Physical Journal B 89 (9) (2016).
    250. L. K. Lim, J. N. Fuchs, F. Piéchon and G. Montambaux, Physical Review B 101 (4) (2020).
    251. W. W. Zhu, S. S. Hou, Y. Long, H. Chen and J. Ren, Physical Review B 97 (7) (2018).
    252. R. Y. Fan, L. Sun, X. F. Shao, Y. Y. Li and M. W. Zhao, Chemphysmater 2 (1), 30-42 (2023).
    253. N. Goldman, D. F. Urban and D. Bercioux, Physical Review A 83 (6) (2011).
    254. D. F. Urban, D. Bercioux, M. Wimmer and W. Häusler, Physical Review B 84 (11) (2011).
    255. V. V. Cheianov and V. I. Fal'ko, Physical Review B 74 (4) (2006).
    256. M. H. Liu, J. Bundesmann and K. Richter, Physical Review B 85 (8) (2012).
    257. E. Sadeghi and H. Rezania, Scientific Reports 12 (1) (2022).
    258. P. G. de Oliveira and A. S. T. Pires, Physica B-Condensed Matter 654 (2023).
    259. A. S. T. Pires, Journal of Magnetism and Magnetic Materials 547 (2022).
    260. J. Navarro-Giraldo and C. Quimbay, Annals of Physics 412 (2020).
    261. V. H. Nguyen and J. C. Charlier, Physical Review B 97 (23) (2018).
    262. A. Contreras-Astorga, F. Correa and V. Jakubsky, Physical Review B 102 (11) (2020).
    263. V. Jakubsky and K. Zelaya, Physica E-Low-Dimensional Systems & Nanostructures 152 (2023).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE