| 研究生: |
呂順清 Liu, Shuen-Chin |
|---|---|
| 論文名稱: |
以MOCVD及碳化處理製備碳化鉻/氧化鋁奈米複合陶瓷之研究 Investigation of Chromium Carbide/Alumina Nanocomposites Prepared by MOCVD and Carbonization |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 碳化鉻 、氧化鋁 、流體床 、有機金屬化學氣相沉積法 、奈米複合材料 |
| 外文關鍵詞: | Fluidized bed, Nanocomposites, MOCVD, Alumina, Chromium carbide |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用有機金屬化學氣相沉積法(MOCVD)與流體床技術(Fluidized Bed),製備Cr2O3/Al2O3奈米複合粉體,並配合後續的碳化處理,將奈米複合粉體變成Cr3C2/Al2O3奈米粉體後,以熱壓燒結製備出碳化鉻/氧化鋁奈米複合陶瓷。並研究奈米複合陶瓷的相、微結構以及機械性質。
實驗結果顯示,在流體化溫度為300℃所製備出的奈米複合粉體,其披覆第二相經由成分分析發現主相為一非晶質的氧化鉻外,粉體中尚有自由基碳和介穩態之CrC1-X的存在。其粉體的表面型態可分為兩類:一為粒徑較小且呈現散霧狀分布的披覆相,另一則是粒徑較大呈現島狀的披覆相。另外,氧化鉻與碳化鉻的轉換反應,深受反應物碳活性和氧分壓的影響,本實驗利用氫氣/甲烷混合氣體於800℃持溫4小時碳化氧化鉻,因低溫800℃下甲烷與氧化鉻即可反應產生碳化鉻,且藉由氫氣還原氣氛有助於碳化反應的發生,並使已反應的碳化鉻不再被氧化。
於真空熱壓1400℃持溫1小時之Cr3C2/Al2O3奈米複合陶瓷的強度、硬度與韌性均較單質氧化鋁有所提升。微結構顯示第二相粒徑大小約50~300nm不等,當中奈米第二相和團聚的第二相大多分布在氧化鋁的晶界上,和少部分第二相分布於晶粒內。機械性質中,強度因第二相碳化鉻的添加可提升至490MPa,其強化機制有晶粒細化、殘留應力、和沿晶轉沿、穿晶混合模式的破壞等強化機制,韌性方面則是提升至3.6 MPa.m1/2,其韌化機制則是裂縫偏折、裂縫分支與差排效應等韌化機制。
The metal-organic chemical vapor deposition (MOCVD) conducted in a fluidized bed has been employed for the preparation of chromium oxide/alumina nanocomposite powder. The chromium carbide (Cr3C2) / alumina (Al2O3) nanocomposite powder was successfully obtained after carbonizing the chromium oxide/alumina nanocomposite powder. The carbonized nanocomposite powder was sintered by hot-pressing at 1400℃ in vacuum. The phases, microstructures and mechanical properties of nanocomposite bulk were discussed in this study.
During the MOCVD process, the amorphous Cr2O3 was deposited on the Al2O3 powder by pyrolysis of Chromium Carbonyl (Cr(CO)6) at 300℃. Besides, there were also little free carbon and metastable CrC1-x on the Al2O3.The form of amorphous Cr2O3 can be divided into fog-like type and island-like type.
The conversion of chromium oxide to chromium carbide was closely influenced by the activity of carbon and oxygen partial pressure. The chromium oxide was carbonized with mixture gas of CH4-H2 at 800℃ for 4 hours. The hydrogen atmosphere facilitated the rate of carbonization and prevented re-oxidation of chromium carbide.
The hot-pressed Cr3C2/Al2O3 nanocomposites have better mechanical performances such as bending strength, fracture toughness and hardness than the monolithic Al2O3. The size distribution of Cr3C2 was from 50nm to 300nm. Most of Cr3C2 were mainly located on the Al2O3 grain boundary and some Cr3C2 existed within the Al2O3 grain. The fracture strength of nanocomposites increased from 375MPa to 490MPa with the mechanism of grain size reduction,residual stress and transgranular fracture. The toughness was improved from 3.0 MPa.m1/2 to 3.6 MPa.m1/2 by crack deflection、crack branching and dislocation effect.
1.黃啟祥、林江財,陶瓷技術手冊(下),經濟部技術處(1994)
2.K. Niihara, “New Design Concept of Structural Ceramics-Ceramic Nanocomposite,” J. Ceram. Soc. Jpn., 99 [10], p.974 (1991)
3.W. H. Tuan and R. J. Brook, “The Toughness of Alumina with Nickel Inclusions,” J. Euro. Ceram. Soc., 6, p.31 (1990)
4.M. Nawa, T. Sekino, and K. Niihara, “Microstructure and Mechanical Properties of Al2O3-Mo Nanocomposites,” J. Jpn. Soc. of Powd. and Powd. Metal., 39, p.1104 (1992)
5.A. Nakahira and K.Niihara, “Sintering Behavior and Consolidation Process for Al2O3/SiC Nanocomposites,” J. Ceram. Soc. Jpn., 100 [4] , p.448 (1992)
6.C. T. Fu and J. M Wu, “Microstructure and Mechanical Properties of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites,” J. Mater. Sci., 29 [10-13] , p.2617 (1994)
7.C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Oxidation of Cr3C2 Particlate Reinforced Al2O3 Matrix Composites on Microstructure and Mechanical Structure Properties,” J. Mater. Sci., 28 [23-24] , p.6285 (1993)
8.K. M. Shu, C. T. Fu, and J. M. Liu, “Electrodischarge-Machining of Al2O3/Cr3C2 Composites,” J. Mater. Sci. Letter, 13 [13-18],p.1146 (1994)
9.C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Post-Sinter Hot Isostatic Pressing Processes on Microstructure and Mechanical Properties of Al2O3-Cr3C2 Composites,” Bri. Ceram. Trans., 93 [5], p.178 (1994)
10.涂國基,常壓燒結Al2O3/Cr3C2複合材料機械性質和微結構之探討, 國立成功大學材料科學及工程學系碩士論文(1994)
11.黃俊傑,Cr3C2/Al2O3射出成型技術之開發及性質研究,國立成功大學材料科學及工程學系碩士論文(1995)
12.林慶章,利用MOCVD及燒結製程製備奈米鉬/氧化鋁複合材料及其微結構發展,國立台灣大學材料科學及工程學系博士論文(2000)
13.H. Itoh, K. Hattori, and S. Naka, “Rotary Powder Bed Chemical Vapor Deposition of Titanium Nitride on Spherical Iron Powder,” J. Mater. Sci., 24, p.3643 (1989)
14.S. Morooka, “Electroconductivity of Sintered Bodies of α-Al2O3-TiN Composites Prepared by CVD Reaction in a Fluidized Bed,” J. Mater. Sci., 28, p.3168 (1993)
15.Wei, W. J. and M. H. Lo” Processing and Properties of (Mo, Cr) Oxycarbides from MOCVD,” Appl. Organometal. Chem, 12, p.201, (1998)
16.羅名宏,鉻、鉬羰化物的披覆製程與鍍層性質性質研究,國立台灣大學材料科學及工程學系碩士論文(1996)
17.Chin Lung Chen and W. J. Wei, “Sintering Behavior and Mechanical Properties of nano-sized Cr3C2/Al2O3 Composites Prepared by MOCVI Process ,” J. Euro. Ceram. Soc., 22, p.2883 (2002)
18.W. Hieber and E. Romberg, Z. Anorg. Allg, Chem., 221,p.332 (1935)
19.J. J. Lander, and L. H. Germer, “Plating Molybdenum ,Tungsten , and Chromium by Thermal Decomposition of Their Carbonyls,” American Institute of Mining and Metallurgical Enginerrs, p.2295(1947)
20.M.H. Lo and W.C.J. Wei, ”Analysis of (Cr,Mo) Oxycarbide Film Grown on Stainless Steel via Metallooragnic Chemical Vapor Deposition”, J.Am.Ceram.Soc.,80[4] , p.886 (1997)
21.J. R. Lindgren and W. R. Johnson,”Friction and wear behavior of chromium carbide coatings,” Surf. Coat. Technol. 32, p.249 (1987)
22.M. Fuoukawa, T. kitada, and O. Nakano, Nippon Tungsten Rev. 20, p.18 (1987)
23.The Editiorial Staff Reference Publications ASM International, ASM Engineered Materials Reference Book
24.P. K. Rajagopalan, T. S. Krishnan, and D. K. Bose, “Development of Carbothermy for the Preparation of Hepta Chromium Carbide,” Journal of Alloys and Compounds , 297, L1-L4 (2000)
25.N. J. Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst.(London), 174 [1] , p.25 (1953)
26.C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175, p.15 (1948)
27.Martin Sternitzke, “Review:Structural Ceramic Nanocmoposites,” J. Euro. Ceram. Soc.,17, p.1061 (1997)
28.R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites, ” Ceram. Eng. Sci. Proc., 11 [7-8], p.667 (1990)
29.K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory,” Acta Metall., 31 [4], p.565 (1983)
30.T. Ohji, Y. Jeong, and K. Niihara, “Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,” J. Am. Ceram. Soc., 81 (6), p.1453 (1998)
31.T. Iizuka and T. Murao, “Microstructures and Properties of Mo5Si2-Particle-Reinforced Si3N4-Matrix Composites,” J. Am. Ceram. Soc., 85 [4], p.954 (2002)
32.王世敏、許祖勛、傅晶,納米材料製備技術,化學工業出版社,北京(2001)
33.金宗哲,新型陶瓷材料手冊,江蘇科學技術出版社(1995)
34.B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Ch. 16, Reading, MA, Addison-Wesley, (1978)
35.I. C. Noyan and J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, NY (1987)
36.吳翼貽,以X光繞射量測殘留應力,科儀新知,13 [6] 23 (1992)
37.黃炳淮,以X光繞射量測殘留應力,科儀新知,22 [2] 23 (1992)
38.J. Luo and R. Stevens, “The Role of Residual Stress on the Mechanical Properties of Al2O3-5 vol% SiC Nanocomposites,” J. Euro. Ceram. Soc., 17, p.1565(1997)
39.A. G. Evans, “Fracture Toughness Determination by Indentation,” J. Am. Ceram. Soc., 59(7-8), p.371 (1976)
40.彭康泰,以有機金屬化學氣相沈積技術及燒結製程製備奈米級矽化鉬/氮化矽複合陶瓷之研究,國立成功大學材料科學及工程學研究所 (2002)
41.F. Maury, D. Oquab, J. C. Manse and R. Morancho,“Structural Characterization of Chromium Carbide Coatings Deposited at Low Temperature by Low Pressure Chemical Vapor Decomposition Using Dicumene Chromium,” Surface and Coatings Technology, 41, p.51 (1990)
42.H. T. Lin, J. L. Huang, W. T. Lo, W. C. J. Wei, “Investigation on Carbonizing Behaviors of Nanometer-sized Cr2O3 Particles Dispersed on Alumina Particles by MOCVD in fluidized Bed,” J. Mater. Res. (in press)
43.J. E. Knap, B. Pesetsky, and F. N. Hill, Plating, 53, p.772 (1966)
44.陳志榮,納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,國立台灣大學材料科學及工程學研究所(2000)
45.T. Ivanova, M. Surtchev, K. Gesheva, “Investigation of CVD Molybdenum Oxide Films,” Mater. Letters, 53, p.250(2002)
46.莊達人,VLSI製造技術,高立圖書有限公司(1995)
47.黃惟聖,以有機金屬化學氣相沈積技術及熱壓製程製備奈米級碳化鉻/氧化鋁複合陶瓷之研究,國立成功大學材料科學及工程學研究所 (2003)
48.Nathaniel Anacleto and Oleg Ostrovski, “Solid-State Reduction of Chromium Oxide by Methane-Containing Gas,” Metall. and Mater. Trans. B,35, p.609 (2004)
49.S. Loubeiere, Ch. Laurent, J. P. Bonino, and A. Rousset, “Elaboration,Microstructure and Reactivity of Cr3C2 Powders of Different Morphology,” Materials Research Bulletin,30(12), p.1535(1995)
50.M. Detroye, F. R.eniers, C.Buess-Herman, J. Vereecken, “Synthesis and Characterisation of Chromium Carbides,” Applied Surface Science,120, p.85(1997)
51.Edmund K. Storms, “The Refractory Carbide ,”New York and London, p.102(1967)
52.靳元良,以MOCVD配合流體床技術製備碳化鉻/氧化鋁奈米複合陶瓷之研究,國立成功大學材料科學及工程學研究所(2005)
53.L. C. De Jonghe, M. N. Rahaman, and C. H. Huseh, “Transient Stresses in Bimodal Compacts During Sintering,” Acta Matell., 34 [7], p1467 (1986)
54.C. H. Huseh, “Sintering behavior of Powder Compacts with Multiheterogeneities,” J. Mater. Sci., 21, p.2067 (1986)
55.Honglai Tan, and Wei Yang, “Toughness Mechanisms of Nano-composite ceramics,” Mechanics of Materials,30, p.111(1998)
56.G. Pezzotti, W. H. Muller, “Strengthening Mechanisms in Al2O3/SiC Nanocomposites,” Computational Materials Science,22, p.155 (2001)
57.H. Z. Wang, L. Gao, L. H. Gui, and J. K. Guo,”Preparation and Properties of Intragranular Al2O3-SiC Nanocomposites,” Nanostructured Materials, 10 [6], p.947(1998)
58.Smith, C. S, “Grains, Phases and Interphases: An Interpretation of The Microstructure,” Tram Metall. Sot.,175, p.15(1949)
59.C. C. Anya, “Microstructural Nature of Strengthening and Toughening in Al2O3-SiC(p) Nanocomposites,” J. Mater. Sci., 34, p.5557 (1999)
60.S.-M. Choi and H. Awaji, “Nanocomposites-A New Material Design Concept,” Science and Technology of Advanced Materials ,6, p.2 (2005)
61.K. K. Tojek and D. J. Green, “Effect of Residual Stress on the Strength Distribution of Brittle Materials,” J. Am. Ceram. Soc., 72, p.1885 (1989)
62.Alias Abuhasan, Chelleyan Balasingh and Paul Predecki, “Residual Stresses in Alumina/Silicon Carbide(whisker) Composites by X-ray Diffraction,” J. Am. Ceram. Soc.,73, p.2474(1990)
63.Robert Samuel and Srinivasan Chandrasekar, “Effect of Residual Stresses on Ground Ceramics,” J. Am. Ceram. Soc.,72, p.1960(1989)
64.Minoru Taya, S. Hayashi, Albert S., Kobayashi and H. S. Yoon, “Toughening of a Particulate-Reinforced Ceramic-Matrix Composite by Thermal Residual Stress,” J. Am. Ceram. Soc.,73, p.1382(1990)
65.J. Soroka and J. Sereda, “Interrelation of Hardness ,Modulus of Elasticity and Porosity in Various Gypsum Systems,” J. Am. Ceram. Soc.,5, p.337(1968)
66.Hideo Awaji ,Seong-Min Choi and Eisuke Yagi, ”Mechanisms of Toughening and Strengthening in Ceramic-based Nanocomposites”, Mechanics of Materials ,34, p.411(2002)
67.R. W. Davidge and T. J. Green, ”The Strength of Two-phase Ceramic-galss Materials, ” J. Mater. Sic.,3, p.629(1968)
68.David Broek, ”Elementary Engineering Fracture Mechanics, ” 4th revised Edition chapter 5、6, Martinus Mijhoff Publishers(1986)