簡易檢索 / 詳目顯示

研究生: 李亭磊
Lee, Ting-Lei
論文名稱: 含偶氮苯兩性雙團聯共聚物之光應答行為和螢光的研究
Photoresponsive and Fluorescence Behaviors of Azobenzene-Containing Amphiphilic Diblock Copolymers
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: 偶氮苯團聯共聚物光異構化反應螢光
外文關鍵詞: azobenzene, block copolymer, photoisomerization, fluorescence
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成一具有光異構化特性之偶氮苯單體,再經由原子轉移自由基聚合法製備兩性雙團聯共聚物poly(acrylic acid)-block-poly(6-[4- (4’-methoxyphenylazo)phenoxy]hexylmethacrylate) (PAA-b-PAzoMA)。我們利用紫外光-可見光分光光度計探討PAA-b-PAzoMA在不同溶劑中的光異構化行為。PAA-b-PAzoMA在酸性及鹼性水溶液中相較於在THF和DMF中的光異構化反應速率較慢,因為PAA-b-PAzoMA在水溶液中形成微胞結構,偶氮苯鏈段被包覆在微胞的內層,形成立體障礙,致使光異構化的反應速率下降。另外未照射紫外光時的最大吸收峰的波長,在水溶液中相較於在THF和DMF中有藍位移的現象,這代表偶氮苯鏈段在水溶液中是以H-aggregate的形態存在。本研究亦探討PAA-b-PAzoMA在四種不同溶劑中的螢光特性,未照射紫外光時,PAA-b-PAzoMA在水溶液中的螢光量子產率比在THF和DMF中高,在照射紫外光後雖然PAA-b-PAzoMA在各溶劑中的螢光量子產率都有提升,但是在THF和DMF中的螢光量子產率高於在水溶液中,這是由於偶氮苯的順式結構有助於螢光量子產率的提升。而在照射紫外光後,水溶液中偶氮苯的順式結構含量少於在THF和DMF中的含量,所以整體螢光量子產率的提升較少。
    本研究亦發現,隨著偶氮苯鏈段的比例越高,光異構化速率越慢,螢光放射的能力越差。

    Azobenzene-containing amphiphilic diblock copolymer poly(acrylic acid)-block-poly(6-[4-(4’-methoxyphenylazo)phenoxy] hexylmethacrylate) (PAA-b-PAzoMA) was synthesized via atom transfer radical polymerization (ATRP). We used UV-vis spectroscopy on the PAA-b-PAzoMA solution to investigate the photoresponsive behavior of PAA-b-PAzoMA in various solvents, including aqueous solution with different pH values, THF, and DMF. PAA-b-PAzoMA self-assembled into polymeric micelles with core-shell structure in aqueous solution, resulting in a reduction of the kinetics of photoisomerization. We also investigated the fluorescence emission of PAA-b-PAzoMA in various solvents. The fluorescence emission increased with UV-irradiation because of the formation of cis-isomers. When the molar fraction of azobenzenes in PAA-b-PAzoMA increased, both the photoisomerization rate and fluorescence quantum yield decreased.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 團聯共聚物的自組裝行為 3 2.1.1 含發光基團的團聯共聚物 3 2.2 偶氮苯化合物 5 2.2.1 偶氮苯光化學 6 2.2.2 偶氮苯分子的聚集 9 2.3 含偶氮苯之兩性團聯共聚物 10 2.3.1 含偶氮苯之兩性團聯共聚物之合成 11 2.3.2 含偶氮苯之兩性團聯共聚物形成微胞 13 2.4 偶氮苯的螢光特性 16 2.5 偶氮苯高分子之應用 22 2.5.1 控制材料的結構 24 2.5.2 奈米藥物傳輸標靶 25 2.5.3 光資訊儲存 26 第三章 實驗 28 3.1 藥品 28 3.2 實驗流程及步驟 30 3.2.1 偶氮苯單體合成 30 3.2.2 團聯共聚物 PAA-b-PAzoMA合成 32 3.2.3 PAA-b-PAzoMA之光異構化反應實驗 34 3.2.4 PAA-b-PAzoMA之螢光放射實驗 34 3.3 分析儀器 35 3.3.1 凝膠滲透層析儀 (Gel permeation resonance, GPC) 35 3.3.2 核磁共振儀 (Nuclear magnetic resonance, NMR) 35 3.3.3 微差熱掃描卡計 (Differential scanning calorimetry, DSC) 36 3.3.4 紫外光-可見光分光光譜儀 (UV-visible spectrophotometer) 36 3.3.5 螢光分光光譜儀 (Fluorescence spectrophotometer) 37 3.3.6 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 37 第四章 結果與討論 38 4.1 團聯共聚物合成 38 4.1.1 偶氮苯單體合成分析 38 4.1.2 PtBA-Br macroinitiator合成分析 41 4.1.3 PtBA-b-PAzoMA合成分析 42 4.1.4 PAA-b-PAzoMA合成分析 43 4.2 PAA-b-PAzoMA之光異構化特性 47 4.2.1 PAA-b-PAzoMA於不同溶劑中之光異構化特性 48 4.2.2 PAzoMA莫耳分率改變對光異構化反應的影響 58 4.3 PAA-b-PAzoMA之螢光特性 65 4.3.1 PAA-b-PAzoMA於不同溶劑中之螢光特性 65 4.3.2 PAA-b-PAzoMA經紫外光照射後之螢光特性 67 4.3.3 PAA-b-PAzoMA在THF中濃度改變對螢光特性的影響 72 4.3.4 PAA-b-PAzoMA莫耳分率改變對螢光特性的影響 73 第五章 結論 79 參考文獻 81

    [1] Yu HF, Kobayashi T, Yang H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv Mater. 2011, 23, 3337-44.
    [2] Yager KG, Barrett CJ. Azobenzene polymers for photonic applications. Smart Light-Responsive Materials. John Wiley & Sons, Inc. 2008, 1-46.
    [3] Monti S, Orlandi G, Palmieri P. Features of the photochemically active state surfaces of azobenzene. Chem Phys. 1982, 71, 87-99.
    [4] Tang QA, Meng XZ, Jiang HB, Zhou TY, Gong CB, Fu XK, et al. Synthesis and characterization of photo- and pH-responsive nanoparticles containing amino-substituted azobenzene. J Mater Chem. 2010, 20, 9133-9.
    [5] Liu ZF, Morigaki K, Enomoto T, Hashimoto K, Fujishima A. Kinetic-studies on the thermal cis trans isomerization of an azo compound in the assembled monolayer film. J Phys Chem-Us. 1992, 96, 1875-80.
    [6] Wu S, Wang L, Kroeger A, Wu YP, Zhang QJ, Bubeck C. Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties. Soft Matter. 2011, 7, 11535-45.
    [7] Tong X, Cui L, Zhao Y. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules. 2004, 37, 3101-12.
    [8] Tian YQ, Watanabe K, Kong XX, Abe J, Iyoda T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules. 2002, 35, 3739-47.
    [9] Kang N, Perron M-È, Prud'homme RE, Zhang Y, Gaucher G, Leroux J-C. Stereocomplex block copolymer micelles:  core−shell nanostructures with enhanced stability. Nano Letters. 2005, 5, 315-9.
    [10] Ding LM, Mao HM, Xu J, He JB, Ding X, Russell TP, et al. Morphological study on an azobenzene-containing liquid crystalline diblock copolymer. Macromolecules. 2008, 41, 1897-900.
    [11] Yu HF, Iyoda T, Ikeda T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc. 2006, 128, 11010-1.
    [12] Yu HF, Li JZ, Ikeda T, Iyoda T. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv Mater. 2006, 18, 2213-5.
    [13] Yu H, Shishido A, Iyoda T, Ikeda T. Novel wormlike nanostructures self-assembled in a well defined liquid crystalline diblock copolymer with azobenzene moieties. Macromolecular Rapid Communications. 2007, 28, 927-31.
    [14] Sin SL, Gan LH, Hu X, Tam KC, Gan YY. Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules. 2005, 38, 3943-8.
    [15] Yu H, Shishido A, Ikeda T, Iyoda T. Novel amphiphilic diblock and triblock liquid-crystalline copolymers with well-defined structures prepared by atom transfer radical polymerization. Macromolecular Rapid Communications. 2005, 26, 1594-8.
    [16] Tang XD, Gao LC, Fan XH, Zhou QF. ABA-type amphiphilic triblock copolymers containing p-ethoxy azobenzene via atom transfer radical polymerization: synthesis, characterization, and properties. J Polym Sci Pol Chem. 2007, 45, 2225-34.
    [17] Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules. 2004, 37, 8911-7.
    [18] Bo Q, Tong X, Zhao Y, Zhao Y. A micellar route to layer-by-layer assembly of hydrophobic functional polymers. Macromolecules. 2008, 41, 3562-70.
    [19] Ravi P, Sin SL, Gan LH, Gan YY, Tam KC, Xia XL, et al. New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer. 2005, 46, 137-46.
    [20] Su W, Zhao H, Wang Z, Li Y, Zhang Q. Sphere to disk transformation of micro-particle composed of azobenzene-containing amphiphilic diblock copolymers under irradiation at 436 nm. European Polymer Journal. 2007, 43, 657-62.
    [21] Liu JH, Chiu YH. Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J Polym Sci Pol Chem. 2010, 48, 1142-8.
    [22] Shimizu M, Hiyama T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem-Asian J. 2010, 5, 1516-31.
    [23] Qi B, Zhao Y. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution. Langmuir. 2007, 23, 5746-51.
    [24] Xiang Y, Xue XQ, Zhu JA, Zhang ZB, Zhang W, Zhou NC, et al. Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer. Polym Chem-Uk. 2010, 1, 1453-8.
    [25] Han M, Hara M. Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc. 2005, 127, 10951-5.
    [26] Ran X, Wang HT, Shi LL, Lou J, Liu B, Li M, et al. Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative. J Mater Chem C. 2014, 2, 9866-73.
    [27] Zhao Y, He J. Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter. 2009, 5, 2686-93.
    [28] Kawatsuki N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem Lett. 2011, 40, 548-54.
    [29] Yu HF. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Prog Polym Sci. 2014, 39, 781-815.
    [30] Kadota S, Aoki K, Nagano S, Seki T. Photocontrolled microphase separation of block copolymers in two dimensions. J Am Chem Soc. 2005, 127, 8266-7.
    [31] Deng W, Albouy PA, Lacaze E, Keller P, Wang XG, Li MH. Azobenzene-containing liquid crystal triblock copolymers: synthesis, characterization, and self-assembly behavior. Macromolecules. 2008, 41, 2459-66.
    [32] Zhao Y. Photocontrollable block copolymer micelles: what can we control? J Mater Chem. 2009, 19, 4887-95.
    [33] Ikeda T, Nakano M, Yu YL, Tsutsumi O, Kanazawa A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003, 15, 201-5.
    [34] Yu YL, Nakano M, Ikeda T. Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers. Pure Appl Chem. 2004, 76, 1467-77.
    [35] Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the ermeability of monolayers of intestinal epithelial-cells (Caco-2). Pharmaceut Res. 1994, 11, 1358-61.
    [36] Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC. Photoregulation of drug release in azo-dextran nanogels. Int J Pharm. 2007, 342, 184-93.
    [37] Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010, 46, 4094-6.
    [38] Eich M, Wendorff JH. Erasable holograms in polymeric liquid-crystals. Makromol Chem-Rapid. 1987, 8, 467-71.
    [39] Kempe C, Rutloh M, Stumpe J. Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red HeNe light. J Phys-Condens Mat. 2003, 15, S813-S23.
    [40] Ishikawa M, Kawata Y, Egami C, Sugihara O, Okamoto N, Tsuchimori M, et al. Reflection-type confocal readout for multilayered optical memory. Opt Lett. 1998, 23, 1781-3.
    [41] Alam MZ, Shibahara A, Ogata T, Kurihara S. Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties. Polymer. 2011, 52, 3696-703.
    [42] Davis KA, Matyjaszewski K. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers. Macromolecules. 2000, 33, 4039-47.
    [43] Sun WQ, He XH, Liao XJ, Lin SL, Huang W, Xie MR. Synthesis of azobenzene-containing side chain liquid crystalline diblock copolymers using RAFT polymerization and photo-responsive behavior. J Appl Polym Sci. 2013, 130, 2165-75.
    [44] Shrivastava S, Matsuoka H. Photoresponsive block copolymer: synthesis, characterization, and surface activity control. Langmuir. 2014, 30, 3957-66.
    [45] Haro M, Giner B, Gascon I, Royo FM, Lopez MC. Isomerization behavior of an azopolymer in terms of the Langmuir-Blodgett film thickness and the transference surface pressure. Macromolecules. 2007, 40, 2058-69.
    [46] Charles MH. Hansen Solubility Parameters. CRC Press. 2007, 385-483.
    [47] Stefanis E, Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys. 2008, 29, 568-85.
    [48] Menzel H, Weichart B, Schmidt A, Paul S, Knoll W, Stumpe J, et al. Small-angle X-Ray-scattering and ultraviolet-visible spectroscopy studies on the structure and structural-changes in Langmuir-Blodgett-films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir. 1994, 10, 1926-33.
    [49] Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem. 2011, 83, 2213-28.
    [50] Hecht E. Optics. Addison-Wesley. 2002.
    [51] Zacharias PS, Ameerunisha S, Korupoju SR. Photoinduced fluorescence changes on E-Z isomerisation in azobenzene derivatives. J Chem Soc Perk T 2. 1998, 2055-9.
    [52] Li Y, Zhou NC, Zhang W, Zhang F, Zhu J, Zhang ZB, et al. Light-driven and aggregation-induced emission from side-chain azoindazole polymers. J Polym Sci Pol Chem. 2011, 49, 4911-20.
    [53] Joshi NK, Fuyuki M, Wada A. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene. J Phys Chem B. 2014, 118, 1891-9.
    [54] Smitha P, Asha SK. Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers. J Phys Chem B. 2007, 111, 6364-73.
    [55] Shi LL, Ran X, Li YJ, Li QY, Qiu WH, Guo LJ. Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator. Rsc Adv. 2015, 5, 38283-9.

    下載圖示 校內:2017-08-24公開
    校外:2017-08-24公開
    QR CODE