| 研究生: |
李亭磊 Lee, Ting-Lei |
|---|---|
| 論文名稱: |
含偶氮苯兩性雙團聯共聚物之光應答行為和螢光的研究 Photoresponsive and Fluorescence Behaviors of Azobenzene-Containing Amphiphilic Diblock Copolymers |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 偶氮苯 、團聯共聚物 、光異構化反應 、螢光 |
| 外文關鍵詞: | azobenzene, block copolymer, photoisomerization, fluorescence |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成一具有光異構化特性之偶氮苯單體,再經由原子轉移自由基聚合法製備兩性雙團聯共聚物poly(acrylic acid)-block-poly(6-[4- (4’-methoxyphenylazo)phenoxy]hexylmethacrylate) (PAA-b-PAzoMA)。我們利用紫外光-可見光分光光度計探討PAA-b-PAzoMA在不同溶劑中的光異構化行為。PAA-b-PAzoMA在酸性及鹼性水溶液中相較於在THF和DMF中的光異構化反應速率較慢,因為PAA-b-PAzoMA在水溶液中形成微胞結構,偶氮苯鏈段被包覆在微胞的內層,形成立體障礙,致使光異構化的反應速率下降。另外未照射紫外光時的最大吸收峰的波長,在水溶液中相較於在THF和DMF中有藍位移的現象,這代表偶氮苯鏈段在水溶液中是以H-aggregate的形態存在。本研究亦探討PAA-b-PAzoMA在四種不同溶劑中的螢光特性,未照射紫外光時,PAA-b-PAzoMA在水溶液中的螢光量子產率比在THF和DMF中高,在照射紫外光後雖然PAA-b-PAzoMA在各溶劑中的螢光量子產率都有提升,但是在THF和DMF中的螢光量子產率高於在水溶液中,這是由於偶氮苯的順式結構有助於螢光量子產率的提升。而在照射紫外光後,水溶液中偶氮苯的順式結構含量少於在THF和DMF中的含量,所以整體螢光量子產率的提升較少。
本研究亦發現,隨著偶氮苯鏈段的比例越高,光異構化速率越慢,螢光放射的能力越差。
Azobenzene-containing amphiphilic diblock copolymer poly(acrylic acid)-block-poly(6-[4-(4’-methoxyphenylazo)phenoxy] hexylmethacrylate) (PAA-b-PAzoMA) was synthesized via atom transfer radical polymerization (ATRP). We used UV-vis spectroscopy on the PAA-b-PAzoMA solution to investigate the photoresponsive behavior of PAA-b-PAzoMA in various solvents, including aqueous solution with different pH values, THF, and DMF. PAA-b-PAzoMA self-assembled into polymeric micelles with core-shell structure in aqueous solution, resulting in a reduction of the kinetics of photoisomerization. We also investigated the fluorescence emission of PAA-b-PAzoMA in various solvents. The fluorescence emission increased with UV-irradiation because of the formation of cis-isomers. When the molar fraction of azobenzenes in PAA-b-PAzoMA increased, both the photoisomerization rate and fluorescence quantum yield decreased.
[1] Yu HF, Kobayashi T, Yang H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv Mater. 2011, 23, 3337-44.
[2] Yager KG, Barrett CJ. Azobenzene polymers for photonic applications. Smart Light-Responsive Materials. John Wiley & Sons, Inc. 2008, 1-46.
[3] Monti S, Orlandi G, Palmieri P. Features of the photochemically active state surfaces of azobenzene. Chem Phys. 1982, 71, 87-99.
[4] Tang QA, Meng XZ, Jiang HB, Zhou TY, Gong CB, Fu XK, et al. Synthesis and characterization of photo- and pH-responsive nanoparticles containing amino-substituted azobenzene. J Mater Chem. 2010, 20, 9133-9.
[5] Liu ZF, Morigaki K, Enomoto T, Hashimoto K, Fujishima A. Kinetic-studies on the thermal cis trans isomerization of an azo compound in the assembled monolayer film. J Phys Chem-Us. 1992, 96, 1875-80.
[6] Wu S, Wang L, Kroeger A, Wu YP, Zhang QJ, Bubeck C. Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties. Soft Matter. 2011, 7, 11535-45.
[7] Tong X, Cui L, Zhao Y. Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules. 2004, 37, 3101-12.
[8] Tian YQ, Watanabe K, Kong XX, Abe J, Iyoda T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules. 2002, 35, 3739-47.
[9] Kang N, Perron M-È, Prud'homme RE, Zhang Y, Gaucher G, Leroux J-C. Stereocomplex block copolymer micelles: core−shell nanostructures with enhanced stability. Nano Letters. 2005, 5, 315-9.
[10] Ding LM, Mao HM, Xu J, He JB, Ding X, Russell TP, et al. Morphological study on an azobenzene-containing liquid crystalline diblock copolymer. Macromolecules. 2008, 41, 1897-900.
[11] Yu HF, Iyoda T, Ikeda T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc. 2006, 128, 11010-1.
[12] Yu HF, Li JZ, Ikeda T, Iyoda T. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv Mater. 2006, 18, 2213-5.
[13] Yu H, Shishido A, Iyoda T, Ikeda T. Novel wormlike nanostructures self-assembled in a well defined liquid crystalline diblock copolymer with azobenzene moieties. Macromolecular Rapid Communications. 2007, 28, 927-31.
[14] Sin SL, Gan LH, Hu X, Tam KC, Gan YY. Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules. 2005, 38, 3943-8.
[15] Yu H, Shishido A, Ikeda T, Iyoda T. Novel amphiphilic diblock and triblock liquid-crystalline copolymers with well-defined structures prepared by atom transfer radical polymerization. Macromolecular Rapid Communications. 2005, 26, 1594-8.
[16] Tang XD, Gao LC, Fan XH, Zhou QF. ABA-type amphiphilic triblock copolymers containing p-ethoxy azobenzene via atom transfer radical polymerization: synthesis, characterization, and properties. J Polym Sci Pol Chem. 2007, 45, 2225-34.
[17] Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules. 2004, 37, 8911-7.
[18] Bo Q, Tong X, Zhao Y, Zhao Y. A micellar route to layer-by-layer assembly of hydrophobic functional polymers. Macromolecules. 2008, 41, 3562-70.
[19] Ravi P, Sin SL, Gan LH, Gan YY, Tam KC, Xia XL, et al. New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer. 2005, 46, 137-46.
[20] Su W, Zhao H, Wang Z, Li Y, Zhang Q. Sphere to disk transformation of micro-particle composed of azobenzene-containing amphiphilic diblock copolymers under irradiation at 436 nm. European Polymer Journal. 2007, 43, 657-62.
[21] Liu JH, Chiu YH. Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J Polym Sci Pol Chem. 2010, 48, 1142-8.
[22] Shimizu M, Hiyama T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem-Asian J. 2010, 5, 1516-31.
[23] Qi B, Zhao Y. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution. Langmuir. 2007, 23, 5746-51.
[24] Xiang Y, Xue XQ, Zhu JA, Zhang ZB, Zhang W, Zhou NC, et al. Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer. Polym Chem-Uk. 2010, 1, 1453-8.
[25] Han M, Hara M. Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative. J Am Chem Soc. 2005, 127, 10951-5.
[26] Ran X, Wang HT, Shi LL, Lou J, Liu B, Li M, et al. Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative. J Mater Chem C. 2014, 2, 9866-73.
[27] Zhao Y, He J. Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter. 2009, 5, 2686-93.
[28] Kawatsuki N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem Lett. 2011, 40, 548-54.
[29] Yu HF. Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Prog Polym Sci. 2014, 39, 781-815.
[30] Kadota S, Aoki K, Nagano S, Seki T. Photocontrolled microphase separation of block copolymers in two dimensions. J Am Chem Soc. 2005, 127, 8266-7.
[31] Deng W, Albouy PA, Lacaze E, Keller P, Wang XG, Li MH. Azobenzene-containing liquid crystal triblock copolymers: synthesis, characterization, and self-assembly behavior. Macromolecules. 2008, 41, 2459-66.
[32] Zhao Y. Photocontrollable block copolymer micelles: what can we control? J Mater Chem. 2009, 19, 4887-95.
[33] Ikeda T, Nakano M, Yu YL, Tsutsumi O, Kanazawa A. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater. 2003, 15, 201-5.
[34] Yu YL, Nakano M, Ikeda T. Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers. Pure Appl Chem. 2004, 76, 1467-77.
[35] Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the ermeability of monolayers of intestinal epithelial-cells (Caco-2). Pharmaceut Res. 1994, 11, 1358-61.
[36] Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC. Photoregulation of drug release in azo-dextran nanogels. Int J Pharm. 2007, 342, 184-93.
[37] Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010, 46, 4094-6.
[38] Eich M, Wendorff JH. Erasable holograms in polymeric liquid-crystals. Makromol Chem-Rapid. 1987, 8, 467-71.
[39] Kempe C, Rutloh M, Stumpe J. Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red HeNe light. J Phys-Condens Mat. 2003, 15, S813-S23.
[40] Ishikawa M, Kawata Y, Egami C, Sugihara O, Okamoto N, Tsuchimori M, et al. Reflection-type confocal readout for multilayered optical memory. Opt Lett. 1998, 23, 1781-3.
[41] Alam MZ, Shibahara A, Ogata T, Kurihara S. Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties. Polymer. 2011, 52, 3696-703.
[42] Davis KA, Matyjaszewski K. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers. Macromolecules. 2000, 33, 4039-47.
[43] Sun WQ, He XH, Liao XJ, Lin SL, Huang W, Xie MR. Synthesis of azobenzene-containing side chain liquid crystalline diblock copolymers using RAFT polymerization and photo-responsive behavior. J Appl Polym Sci. 2013, 130, 2165-75.
[44] Shrivastava S, Matsuoka H. Photoresponsive block copolymer: synthesis, characterization, and surface activity control. Langmuir. 2014, 30, 3957-66.
[45] Haro M, Giner B, Gascon I, Royo FM, Lopez MC. Isomerization behavior of an azopolymer in terms of the Langmuir-Blodgett film thickness and the transference surface pressure. Macromolecules. 2007, 40, 2058-69.
[46] Charles MH. Hansen Solubility Parameters. CRC Press. 2007, 385-483.
[47] Stefanis E, Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys. 2008, 29, 568-85.
[48] Menzel H, Weichart B, Schmidt A, Paul S, Knoll W, Stumpe J, et al. Small-angle X-Ray-scattering and ultraviolet-visible spectroscopy studies on the structure and structural-changes in Langmuir-Blodgett-films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length. Langmuir. 1994, 10, 1926-33.
[49] Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem. 2011, 83, 2213-28.
[50] Hecht E. Optics. Addison-Wesley. 2002.
[51] Zacharias PS, Ameerunisha S, Korupoju SR. Photoinduced fluorescence changes on E-Z isomerisation in azobenzene derivatives. J Chem Soc Perk T 2. 1998, 2055-9.
[52] Li Y, Zhou NC, Zhang W, Zhang F, Zhu J, Zhang ZB, et al. Light-driven and aggregation-induced emission from side-chain azoindazole polymers. J Polym Sci Pol Chem. 2011, 49, 4911-20.
[53] Joshi NK, Fuyuki M, Wada A. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene. J Phys Chem B. 2014, 118, 1891-9.
[54] Smitha P, Asha SK. Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers. J Phys Chem B. 2007, 111, 6364-73.
[55] Shi LL, Ran X, Li YJ, Li QY, Qiu WH, Guo LJ. Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator. Rsc Adv. 2015, 5, 38283-9.