簡易檢索 / 詳目顯示

研究生: 賴威成
Lai, Wei-Cheng
論文名稱: 以具共價鍵性質的二氰金化鈉探討二十面體金奈米顆粒的可逆生成行為
Reversible formation of sub-10 nm Au icosahedral nanoparticles with NaAu(CN)2 precursor
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 金奈米顆粒二十面體二氰金化鈉可逆生成晶種成長
外文關鍵詞: Au icosahedra, NaAu(CN)2, Reversible formation, Seed-mediated growth
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 選用具有共價鍵性質的Au(CN)2-作為前驅物,在有PVP與檸檬酸存在下以NaBH4還原後可得到非常均一且尺寸~ 8 nm的二十面體金奈米顆粒,若將PVP移除後可以得到單晶的球狀金奈米顆粒,簡單地改變反應條件就可以達到金奈米顆粒形貌上的控制。本研究中發現PVP的存在對二十面體形貌的產生為決定性的因素,檸檬酸則促進了二十面體形貌的產生並提高其產率,由於Au(CN)2-被還原後釋出的CN-離子所進行的金氰化反應與Au(CN)2-本身的高穩定常數,使我們可以進行可逆生成二十面體金奈米顆粒與氧化溶解的過程。本研究完整地探討此過程,並且發現pH值的改變會影響Au(CN)2-的還原速度,使表面電漿共振的生成趨勢以及產物的形貌發生改變;藉以~ 8 nm的二十面體金奈米顆粒作為晶種,使用CTAB與HAuCl4作為成長液進行晶種成長法,我們成功開發出了一個簡單且反應快速的合成方法以製備各種大小尺寸的二十面體金奈米顆粒,可控制的尺寸從~ 21 nm至~ 57 nm;若改以Ag(CN)2-作為前驅物,同樣可在檸檬酸與PVP的存在下進行還原生成-氧化溶解的過程,同樣地pH值也會影響其表面電漿共振的生成趨勢。

    The highly monodisperse ~ 8 nm Au icosahedra nanoparticles were synthe-sized in the presence of trisodium citrate dehydrate and polyvinylpyrrolidone (PVP) using covalent Au(CN)2- as starting precursor. When PVP was removed from the solution, we were able to synthesize single-crystalline gold nanospheres. By controlling the presence of PVP in the solution we can attain shape-control of gold nanoparticles. PVP played a critical role in direct icosahedra formation, while citrate promoted particle formation to exclusively yield icosahedra. The released CN- ions from the reduction of Au(CN)2- resulted in the gold cyanidation accompanied by the formation of Au(CN)2- complexes. This work investigated the reversible formation-dissolution of Au icosahedra process. We found that pH value affected the reduction rate of Au(CN)2- which was an important factor in determining the morphology and size of the products. A rapid and easy seed-mediated growth was used to prepare different size of Au icosahedra (~21 – ~57 nm) with ~ 8 nm Au icosahedra as seed. Replace Ag(CN)2- as precursor, the reversible formation-dissolution of Ag nanoparticles process also can be conducted in the presence of trisodium citrate dehydrate and PVP.

    第一章、緒論 1 1-1.奈米材料的介紹 1 1-2.貴重金屬奈米材料的製備方式 2 1-3. 金奈米材料的特性 4 1-3-1. 金奈米粒子的表面電漿共振 6 1-4. 金奈米粒子的合成方式 9 1-4-1. 不同金鹽前驅物的性質比較 10 1-4-2. 以HAuCl4合成金奈米材料的方法簡介 11 1-4-3. 以AuCl合成金奈米材料的方法簡介 15 1-4-4. 以Au(CN)2-合成金奈米材料的方法簡介 17 1-5. 控制金奈米材料形貌的合成途徑介紹 20 1-5-1. 奈米材料結構的成長機制 20 1-5-2. 面心立方奈米顆粒的常見形貌 21 1-5-3. 氧化侵蝕 22 1-5-4. 表面分子的影響 24 1-6. 金奈米材料的應用 25 1-6-1. 二十面體金奈米顆粒應用於表面強化拉曼散射 26 1-6-2. 二十面體金奈米顆粒於催化上的應用 27 第二章、實驗部份 29 2-1. 研究動機與目的 29 2-2. 實驗藥品 30 2-3. 儀器設備 31 2-4. 二十面體金奈米顆粒的可逆生成與溶解 32 2-5. 單晶金奈米顆粒的可逆生成與溶解 33 2-6. 以二十面體金奈米顆粒作為晶種的再成長 33 2-7. 銀奈米晶體的可逆生成與溶解 33 第三章、實驗結果與討論 34 3-1. 二十面體金奈米顆粒與單晶金奈米球的製備與其SPR的變化趨勢 34 3-2. 二十面體金奈米顆粒在第一個循環下成長與溶解的行為 39 3-2-1. 金奈米顆粒的還原生成與氧化溶解機制 44 3-2-2. 二十面體金奈米顆粒形貌改變的機構探討 46 3-2-3. 二十面體金奈米顆粒以氬氣除氧後的反應行為 46 3-2-4. 二十面體金奈米顆粒的表面分析 49 3-2-5. 單晶球形與二十面體的金奈米顆粒的生成機構探討 51 3-2-6. 多次循環下二十面體金奈米顆粒的可逆生成與溶解 52 3-2-7. pH值對二十面體金奈米顆粒生成與溶解行為的影響 56 3-3. 以晶種成長法製備不同尺寸的二十面體金奈米顆粒 62 3-4. 以Ag(CN)2-進行銀奈米顆粒的可逆生成與溶解 65 第四章、結論 70 第五章、參考文獻 71

    1. R. P. Feynman, Popular Science, November, 114-118, 1960.
    2. N. Taniguchi, Proc. Intl. Conf. Prod. Eng. Part II, Japan Society of Precision En-gineering, Tokyo, 1974.
    3. L. Goeran, R. Hubert, R. Gert, S.-K. Birqit, G. Peter, P. Jean-Philippe, S. Her-mann, Considerations on a Definition of Nanomaterial for Regulatory Purposes, Publications Office of the European Union, 2010.
    4. R. C. Birtcher, S. E. Donnelly, S. Schlutig, “Nanoparticle Ejection from Au In-duced by Single Xe Ion Impacts.” Phys. Rev. Lett. 85 (23), 4968-4971, 2000.
    5. S. A. Harfenist, Z. L. Wang, R. L. Whetten, I. Vezmar, M. M. Alvarez, “Three-Dimensional Hexagonal Close-Packed Superlattice of Passivated Ag Nanocrystals.” Adv. Mater. 9 (10), 817-822, 1997.
    6. J. H. Kim, T. A. Germer, G. W. Mulholland, S. H. Ehrman, “Size-Monodisperse Metal Nanoparticles via Hydrogen-Free Spray Pyrolysis.” Adv. Mater. 14 (7), 518-521, 2002.
    7. M. Gracia-Pinilla, E. Martínez, G. S. Vidaurri, E. Pérez-Tijerina, “Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation.” Nanoscale Res. Lett. 5,180-188, 2010.
    8. E. Pérez-Tijerina, M. Gracia-Pinilla, S. Mejía-Rosales, U. Ortiz-Méndez, A. Torresb, M. José-Yacamán, ”Highly Size-Controlled Synthesis of Au/Pd Nano-particles by Inert-Gas Condensation.” Faraday Discuss. 138, 353-362, 2008.
    9. M. Watanabe, H. Takamura, H. Sugai, ”Preparation of Ultrafine Fe–Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis.” Na-noscale Res. Lett. 4, 565-573, 2009.
    10. (a) D, Kim, S. Park, J. H. Lee, Y. Y. Jeong, S. Jon, ”Antibiofouling Poly-mer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Com-puted Tomography Imaging.” J. Am. Chem. Soc. 129, 7661-7665, 2007. (b) K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C.-T. Hsieh, C.-K. Sun, C.-S. Yeh, ”Efficient Near-IR Hyperthermia and Intense Nonlinear Optical Imaging Contrast on the Gold Nanorod-in-Shell Nanostructures” J. Am. Chem. Soc. 131, 14186-14187, 2009. (c) H, Tsunoyama, H. Sakurai, Y. Negishi, T. Tsuku-da, ”Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water.” J. Am. Chem. Soc. 127, 9374-9375, 2005. (d) A. Panaáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pi-zu´rová, V. K. Sharma, T. Nevěčná, R. Zbořil, ”Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity.” J. Phys. Chem. B 110, 16248-16253, 2006. (e) H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, S. H. Tang, ”Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles.” Langmuir 13, 172-175, 1997. (f) R. Narayanan, M. A. El-Sayed, ”Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles.” J. Am. Chem. Soc. 125, 8340-8347, 2003.
    11. (a) A. Tao, P. Sinsermsuksakul, P. Yang, ”Polyhedral Silver Nanocrystals with Distinct Scattering Signatures.” Angew. Chem. Int. Ed. 45, 4597-4601, 2006. (b) C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L.-I Hung, G. A. Somorjai, P. Yang, ”Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Cata-lytic Study for Ethylene and Pyrrole Hydrogenation.” J. Am. Chem. Soc. 131, 5816-5822, 2009. (c) C. Li, W. Cai, B. Cao, F. Sun, Y. Li, C. Kan, L. Zhang, ”Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process.” Adv. Funct. Mater. 16, 83–90, 2006. (d) Y. Xiong, J. Chen, B. Wiley, Y. Xia, ”Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size.” J. Am. Chem. Soc. 127, 7332-7333, 2005.
    12. (a) M. Andersson, J. S. Pedersen, A. E. C. Palmqvist, ”Silver Nanoparticle For-mation in Microemulsions Acting Both as Template and Reducing Agent.” Langmuir 21, 11387-11396, 2005. (b) C. Y. Wang, Y. Zhou, Z. Y. Chen, B. Cheng, H. J. Liu, X. Mo, ”Preparation of Shell–Core Cu2O–Cu Nanocomposite Particles and Cu Nanoparticles in a New Microemulsion System.” J. Colloid In-terface Sci. 220, 468-470, 1999.
    13. (a) M. B. Mohamed, K. M. AbouZeid, V. Abdelsayed, A. A. Aljarash, M. S. El-Shall, ”Growth Mechanism of Anisotropic Gold Nanocrystals via Microwave Synthesis: Formation of Dioleamide by Gold Nanocatalysis.” ACS Nano 4 (5), 2766-2772, 2010. (b) B. Hu, S.-B. Wang, K. Wang, M. Zhang, S.-H. Yu, ”Cross-Linked Polynorbornene-Coated Gold Nanoparticles: Dependence of Particle Stability on Cross-Linking Position and Cross-Linker Structure.” J. Phys. Chem. C 112, 11169-11174, 2008. (c) V. Abdelsayed, A. Aljarash, M. S. El-Shall, ”Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys.” Chem. Mater. 21, 2825-2834, 2009.
    14. P. Buffat, J-P. Borel, ”Size Effect on the Melting Temperature of Gold Particles.” Phys. Rev. A 13, 2287-2298, 1976.
    15. H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, M. Miyake, “Di-ameter Dependence of Ferromagnetic Spin moment in Au Nanocrystals.” Phys. Rev. B 69, 174411-1~174411-5, 2004.
    16. R. Grisel, K.-J. Weststrate, A. Gluhoi, B. E Nieuwenhuys, ”Catalysis by Gold Nanoparticles.” Gold Bull. 35 (2), 39-45, 2002.
    17. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, ”The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.” J. Phys. Chem. B 107, 668-677, 2003.
    18. G. Mie, ”Beiträge Zur Optik Trüber Medien.” Ann. Phys. 25, 377-445, 1908.
    19. (a) U. Kreibig, M. Vollmer “Optical Properties of Metal Clusters.” Berlin: Springer, 1995. (b) S. Link, M. A. El-Sayed, ”Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals.” Int. Rev. Phys. Chem. 19 (3), 409-453, 2000. (c) S. K. Ghosh, T. Pal, “Interpar-ticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications.” Chem. Rev. 107, 4797-4862, 2007.
    20. R. Weissleder, “A Clearer Vision for in vivo Imaging.” Nat. Biotechnol. 19, 316-317, 2001.
    21. M. Faraday, “Experimental Relations of Gold (and other Metals) to Light.” Phi-los. Trans. R. Soc. 147, 145-181, 1857.
    22. J. Turkevich, P. C. Stevenson, J. Hillier, “A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold.” Discuss. Faraday Soc. 11, 55 –75, 1951.
    23. (a) C. Corti, R. Holliday, Gold: science and application, Taylor & Francis, p.240, 2009. (b) W. Sun, D.G. Ivey, “Development of an Electroplating Solution for Codepositing Au–Sn Alloys.” Mater. Sci. Eng. B65, 111-122, 1999.
    24. J. Zeng, Y. Ma, U. Jeong, Y. Xia, “AuI: an Alternative and Potentially Better Precursor than AuIII for the Synthesis of Au Nanostructures.” J. Mater. Chem. 20, 2290-2301, 2010.
    25. C. H. Gammons, Y. Yu, A. E. Williams-Jones, “The Disproportionation of Gold(I) Chloride Complexes at 25 to 200°C.” Geochim. et Cosmochim. Ac. 6, 1971-1983, 1997.
    26. L. Au, X. Lu, Y. Xia, ”A Comparative Study of Galvanic Replacement Reac-tions Involving Ag Nanocubes and AuCl2- or AuCl4-.” Adv. Mater. 20, 2517-2522, 2008.
    27. X.-B. Wang, Y.-L. Wang, J. Yang, X.-P. Xing, J. Li, L.-S. Wang, ”Evidence of Significant Covalent Bonding in Au(CN)2-.” J. Am. Chem. Soc. 131, 16368-16370, 2009.
    28. J. Marsden, I. House, The Chemistry of Gold Extraction (2nd ed.) Society for Mining Metallurgy & Exploration, p.8, 2006
    29. (a) Y. Sun, Y. Xia, ”Shape-Controlled Synthesis of Gold and Silver Nanopar-ticles.” Science 298, 2176-2179, 2002. (b) G. S. Métraux, Y. C. Cao, R. Jin, C. A. Mirkin, ” Triangular Nanoframes Made of Gold and Silver.” Nano Lett. 3 (4), 519-522, 2003. (c) Q. Zhang, J. Xie, J. Yang, J. Y. Lee, ” Monodisperse Icosa-hedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation.” ACS Nano 3 (1), 139-148, 2009.
    30. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, ”Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System.” J. Chem. Soc., Chem. Commun. 801-802, 1994.
    31. C.-L. Chiang, ”Controlled Growth of Gold Nanoparticles in AOT/C12E4/Isooctane Mixed Reverse Micelles.” J. Colloid Interface Sci. 239, 334-341, 2001.
    32. M. Aslam, L. Fu, M. Su, K. Vijayamohanan,V. P. Dravid, ”Novel One-step Synthesis of Amine-Stabilized Aqueous Colloidal Gold Nanoparticles.” J. Mater. Chem. 14 , 1795-1797, 2004.
    33. (a) N. R. Jana, L. Gearheart, C. J. Murphy, ”Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods.” J. Phys. Chem. B 105, 4065-4067, 2001. (b) J. Gao, C. M. Bender, C. J. Murphy, ”Dependence of the Gold Nano-rod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution.” Langmuir 19, 9065-9070, 2003.
    34. F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, ”Platonic Gold Nanocrys-tals.” Angew. Chem. Int. Ed. 43, 3673-3677, 2004.
    35. X. Lu, H.-Y. Tuan, B. A. Korgel, Y. Xia, ”Facile Synthesis of Gold Nanopar-ticles with Narrow Size Distribution by Using AuCl or AuBr as the Precursor.” Chem. Eur. J. 14, 1584-1591, 2008.
    36. Y. Ma, J. Zeng, W. Li, M. McKiernan, Z. Xie, Y. Xia, ”Seed-Mediated Synthesis of Truncated Gold Decahedrons with a AuCl/Oleylamine Complex as Precursor.” Adv. Mater. 22, 1930-1934, 2010.
    37. S. Karim, M. E. Toimil-Molares, F. Maurer, G. Miehe, W. Ensinger, J. Liu, T. W. Cornelius, R. Neumann, ”Synthesis of Gold nanowires with Controlled Crystallographic Characteristics.” Appl. Phys. A 84, 403-407, 2006.
    38. (a) A. Henglein, D. Meisel, ”Radiolytic Control of the Size of Colloidal Gold Nanoparticles.” Langmuir 14, 7392-7396, 1998. (b) A. Henglein, ”Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions.” Langmuir 15, 6738-6744, 1999.
    39. (a) A. Henglein, ”Preparation and Optical Aborption Spectra of AucorePtshell and PtcoreAushell Colloidal Nanoparticles in Aqueous Solution.” J. Phys. Chem. B 104, 2201-2203, 2000. (b) J. Majimel, D. Bacinello, E. Durand, F. Vallée, M. Tréguer-Delapierre, ”Synthesis of Hybrid Gold-Gold Sulfide Colloidal Particles.” Langmuir 24, 4289-4294, 2008.
    40. (a) X. Ma, X. Li, N. Lun, S. Wen, ”Synthesis of Gold Nano-Catalysts Supported on Carbon Nanotubes by Using Electroless Plating Technique.” Mater. Chem. Phys. 97, 351-356, 2006. (b) S.A. Vorobyova, N.S. Sobal, A.I. Lesniko-vich, ”Colloidal Gold, Prepared by Interphase Reduction.” Colloid Surface 176, 273-277, 2001.
    41. Q. F. Zhou, J. C. Bao, Z. Xu, ”Shape-Controlled Synthesis of Nanostructured Gold by a Protection–Reduction Technique.” J. Mater. Chem. 12, 384, 2002.
    42. (a) Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, ”Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?” Angew. Chem. Int. Ed. 48, 60-103, 2009. (b) A. R. Tao, S. Habas, P. Yang, ”Shape Control of Colloidal Metal Nanocrystals.” Small 4, 310-325, 2008. (c) C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, ”Chemistry and Properties of Nanocrystals of Different Shapes.” Chem. Rev. 105, 1025-1102, 2005.
    43. Z. L. Wang, ”Transmission Electron Microscopy of Shape-Controlled Nano-crystals and Their Assemblies.” J. Phys. Chem. B 104, 1153-1175, 2000.
    44. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottete, ”Crossover among Structural Motifs in Transition and Noble-Metal Clusters.” J. Chem. Phys. 116 (9), 3856-3863, 2002.
    45. W. Li, Y. Xia, ”Facile Synthesis of Gold Octahedra by Direct Reduction of HAuCl4 in an Aqueous Solution.” Chem. Asian J. 5, 1312-1316, 2010.
    46. D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, H. Song, ”Shape Adjustment between Multiply Twinned and Single-Crystalline Polyhedral Gold Nanocrystals: Decahedra, Icosahedra, and Truncated Tetrahedra.” J. Phys. Chem. C 112, 2469-2475, 2008.
    47. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, W. J. Parak, ”Biological Appli-cations of Gold Nanoparticles.” Chem. Soc. Rev. 37, 1896-1908, 2008.
    48. X. Huang, S. Neretina, M. A. El-Sayed, ”Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications.” Adv. Mater. 21, 1-31, 2009.
    49. C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, ”Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Na-noparticle Shape Dependence.” Anal. Chem. 77, 3261-3266, 2005.
    50. K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, S. W. Han, ”Con-trolled Synthesis of Icosahedral Gold Nanoparticles and Their Surface-Enhanced Raman Scattering Property.” J. Phys. Chem. C 111, 1161-1165, 2007.
    51. (a) G. C. Bond, P. A. Sermon, ”Gold Catalysts for Olefin Hydrogenation.” Gold Bull. 6, 102-105, 1973. (b) G. C. Bond, P. A. Sermon, ”Hydrogenation over Supported Gold Catalysts.” J. Chem. Soc. Chem. Commun. 444-445, 1973.
    52. D. Thompson, ”New Advances in Gold Catalysis Part I” Gold Bull. 31 (4), 111-118, 1998.
    53. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Del-mon, ”Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3 and Co3O4.” J. Catal. 144, 175-192, 1993.
    54. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, ”Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide.” J. Catal. 115, 301-309, 1989.
    55. Z. Ma, C. Liang, S. H. Overbury, S. Dai, ”Gold Nanoparticles on Electro-less-Deposition-Derived MnOx/C: Synthesis, Characterization, and Catalytic CO Oxidation.” J. Catal. 252, 119-126, 2007.
    56. S. Peng, Y. Lee, C. Wang, H. Yin, S. Dai, S. Sun, ”A Facile Synthesis of Mono-disperse Au Nanoparticles and Their Catalysis of CO Oxidation.” Nano Res. 1, 229-234, 2008.
    57. H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai, P. Yang, ”Mor-phological Control of Catalytically Active Platinum Nanocrystals.” Angew. Chem. Int. Ed. 45, 7824 –7828, 2006.
    58. K.-i. Okazaki, J.-i. Yasui, T. Torimoto, ”Electrochemical Deposition of Gold Frame Structure on Silver Nanocubes.” Chem. Commun. 2917-2919, 2009.
    59. B. Seo, S. Choi, J. Kim, ”Simple Electrochemical Deposition of Au Nanoplates from Au(I) Cyanide Complexes and Their Electrocatalytic Activities.” ACS Appl. Mater. Interfaces 3, 441-446, 2011.
    60. (a) C. Li, K. L. Shuford, Q.-H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, ”High-Yield Synthesis of Single-Crystalline Gold Nano-octahedra.” Angew. Chem. Int. Ed. 46, 3264-3268, 2007. (b) A. Halder, N. Ravishankar, ”Gold Nanostructures from Cube-Shaped Crystalline Intermediates.” J. Phys. Chem. B 110, 6595-6600, 2006.
    61. M. J. Yacamán, J. A. Ascencio, H. B. Liu, J. Gardea-Torresdey, ”Structure Shape and Stability of Nanometric Sized Particles.” J. Vac. Sci. Technol. B 19 (4), 1091-1103, 2001.
    62. (a) D. J. Smith, A. K. Petford-Long, L. R. Wallenberg, J.-O. Bovin, ”Dynamic Atomic-Level Rearrangements in Small Gold Particles.” Science 233, 872-875, 1986. (b) S. Iijima, T. Ichihashi, ”Structure Instability of Ultrafine Particles of Metals.” Phys. Rev. Lett. 56 (6), 616-619, 1986.
    63. N. R. Jana, L. Gearheart, C. J. Murphy, ”Evidence for Seed-Mediated Nuclea-tion in the Chemical Reduction of Gold Salts to Gold Nanoparticles.” Chem. Mater. 13, 2313-2322, 2001.
    64. G. Senanayake, ”Kinetics and Reaction Mechanism of Gold Cyanidation: Sur-face Reaction Model via Au(I)–OH–CN Complexes.” Hydrometallurgy 80, 1-12, 2005.
    65. M. I. Jeffrey, I. M. Ritchie, ”The Leaching and Electrochemistry of Gold in High Purity Cyanide Solutions.” J. Electrochem. Soc. 148 (4), D29-D36, 2001.
    66. R. Seoudi, A. A.Fouda, D. A. Elmenshawy, ”Synthesis, Characterization and Vi-brational Spectroscopic Studies of Different Particle Size of Gold Nanoparticle Capped with Polyvinylpyrrolidone.” Physica B 405, 906–911, 2010.
    67. A.S. Tselesh, ”Anodic Behaviour of Tin in Citrate Solutions: The IR and XPS Study on the Composition of the Passive Layer.” Thin Solid Films 516, 6253-6260, 2008.
    68. Y.-C. Yen, S.-W.i Kuo, C.-F. Huang, J.-K. Chen, F.-C. Chang, ”Miscibility and Hydrogen-Bonding Behavior in Organic/Inorganic Polymer Hybrids Containing Octaphenol Polyhedral Oligomeric Silsesquioxane.” J. Phys. Chem. B 112, 10821–10829, 2008.
    69. F. Bonet, K. Tekaia-Elhsissen, K. V.Sarathy, ”Study of Interaction of Ethylene Glycol/PVP Phase on Noble Metal Powders Prepared by Polyol Process.” Bull. Mater. Sci. 23, 165-168, 2000.
    70. (a) M.P. Seah, ”Post-1989 Calibration Energies for X-ray Photoelectron Spec-trometers and the 1990 Josephson Constant.” Surf. Interface Anal. 14, 488, 1989. (b) D. Li, Q. He, Y. Cui, K. Wang, X. Zhang, J. Li, ”Thermosensitive Copolymer Networks Modify Gold Nanoparticles for Nanocomposite Entrapment.” Chem. Eur. J. 13, 2224-2229, 2007.
    71. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, S. Li, ”Synthesis and Optical Properties of “Branched” Gold Nanocrystals.” Nano Lett. 4 (2), 327-330, 2004.
    72. B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li, Y. Xia, “Shape-Controlled Synthesis of Silver and Gold Nanostructures.” MRS Bull. 30, 356-360, 2005.
    73. (a) D. Aherne, D. M. Ledwith, M. Gara, J. M. Kelly, ”Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature.” Adv. Funct. Mater. 18, 2005-2016, 2008. (b) J. Zeng, Y. Zheng, M. Rycenga, J. Tao, Z.-Y. Li, Q. Zheng, Y. Zhu, Y. Xia, ” Controlling the Shapes of Silver Nanocrystals with Different Capping Agents.” J. Am. Chem. Soc. 132, 8552-8553, 2010. (c) D. M. Ledwith, A. M. Whelan, J. M. Kelly, ”A Rapid, Dtraight-Forward Method for Controlling the Morphology of Stable Silver Nanoparticles.” J. Mater. Chem. 17, 2459-2464, 2007.
    74. M. A. Rawashdeh-Omary, M. A. Omary, H. H. Patterson, “ Oligomerization of Au(CN)2- and Ag(CN)2- Ions in Solution via Ground-State Aurophilic and Ar-gentophilic Bonding.“ J. Am. Chem. Soc. 122, 10371-10380, 2000.
    75. T. Xue, K. Osseo-Asare, ”Heterogeneous Equilibria in the Au-CN-H2O and Ag-CN-H2O Systems.” Metall. Trans. B 16, 455-463, 1985.
    76. Y. Xiong, J. M. McLellan, Y. Yin, Y. Xia, ”Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Ci-trate Ions.” Angew. Chem. Int. Ed. 46, 790–794, 2007.

    無法下載圖示 校內:2013-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE