| 研究生: |
翁偉程 Weng, Wei-cheng |
|---|---|
| 論文名稱: |
綠色螢光蛋白在基因重組大腸桿菌生物取像系統應用之研究 The Imaging Analysis of Recombinant Escherichia coli Using Green Fluorescence Protein |
| 指導教授: |
鄭智元
Cheng, Chu-yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 綠色螢光蛋白 、生物取向系統 、巨大原生質體 、基因工程 、大腸桿菌 |
| 外文關鍵詞: | bioimaging system, Escherichia.coli, GFP, green fluorescence protein, giant protoplasts |
| 相關次數: | 點閱:257 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討綠色螢光蛋白濃度與螢光強度之間的關係,以便應用於使用巨大原生質體之生物取像系統。首先將gfp基因植入在pET21a質體,以BL21為宿主大量表現綠色螢光蛋白。
純化定量出綠色螢光蛋白後,分析純化後綠色螢光蛋白在螢光光度計之螢光強度,與巨大原生質體內綠色螢光蛋白在螢光顯微鏡下和螢光光度計下的螢光強度表現結合,確立巨大原生質體以螢光顯微鏡取得螢光強度與以螢光光度計取得之螢光強度之關係,可以使巨大原生質體在螢光顯微鏡下觀察分析後,直接藉由此關係來推估所生成的綠色螢光蛋白濃度,不僅跳脫以往只是定性的觀察培養中螢光變化外,更可以定量出螢光蛋白濃度的高低,利用此結果,可以提升巨大原生質體之生物取像系統的發展潛力,更可以精確地標的定量出目標蛋白的含量。
The correlation between green fluorescence protein concentration and intensity is studied in this research. We can use this correlation in the bioimaging system of giant protoplast. First we inserted green fluorescence protein gene (gfp) into pET21a, and we use Escherichia coli BL21 to express green fluorescence protein massively.
Firstly, Fluorescence Spectrophotometer was used to quantify and analyze the fluorescence intensity of purified green fluorescence protein. Secondary, the fluorescence intensities of green fluorescence protein in giant protoplasts were determined by Fluorescence Microscopy and Flourescence Spectrophotometer, respectively. Using this correlation, the concentration of green fluorescence protein produced by the giant protoplasts could be quantified when we directly analyze the photos from Fluorecence Microscopy. A correlation between the values of green fluorescence protein fluorescence intensity in giant protoplasts which was determined by Fluorescence Microscopy and was determined by Flourescence Spectrophotometer was built-up by comparing with the value of purified green fluorescence protein fluorescence intensity.
We established a giant protoplast-bioimaging system in which target protein not only can be qualitative but also can be quantitative.
1. Baumann, P., L. Baumann, M. J. Woolkalis, and S. S. Bang, “Evolution relationship in Vibrio and photobacterium: a basis for a natural classification,” Annu. Rev. Microbial., 37: 369-398 (1983).
2. Birdsell, D. C., and E. H. Cota-Robles, “Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme Spheroplasts of Escherichia coli,” J. Bacteriol., 93: 427-437 (1967).
3. Bullen, J. J., Spalding, P. B., Ward, C. G., and Gutteridge, “Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch. Intern.Med.” J. M. 151:1606-1609 (1991).
4. Campbell, A.K., “Living light: biochemistry, function and biomedical application,” Essays Biochem., 24: 41-81 (1989).
5. Chang, C. C., Y. C. Chuang, Y. C. Chen, and M. C. Chang, “Bright fluorescent of a novel protein from Vibrio vulnificus depends on NADPH and the expression of this protein is regulated by a LysR-type regulatory gene,” Biochem. Biophys. Res. Commun., 319: 207-213 (2004).
6. Chang, C. C., Y. C. Yin, and M. C. Chang, “Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution,” Biochem. Biophys. Res. Commun., 322: 303-309 (2004).
7. Costerton, J. W., J. M. Ingram, and K. J. Cheng, “Structure and function of cell envelope of Gram-negative bacteria.”Bacteriolgical Reviews, 87-110 (1974).
8. Epstein, W., and S. G. Schultz, “Cation transport in Escherichia coli V. Regulation of cation content”, J. Gen. Physiol., 49: 221-234 (1965).
9. Furtado, Agnelo, and Robert Henry, “Measurement of green fluorescent protein concentration in single cells by image analysis,” Anal. Biochem., 310: 84-92 (2002).
10. Gabriel D. Peckham, Robert C. Bugos, Wei Wen Su, “PuriWcation of GFP fusion proteins from transgenic plant cell cultures,” Protein Expression and PuriWcation., 49: 183–189 (2006).
11. Hastings, J. W., C. J. Potrikus, S. C. Gupta, M. Kurfurst, and J. C. Makemson, “Biochemistry and physiology of bioluminescent bacteria,” Adv. microb. physiol., 26: 235-291 (1985).
12. Heeswijk, W. C., Rabenberg, M., Weterhoff, H. V., and Kahn, D. “The genes of the glutamine systhetase adenylation cascade are not regulated by nitrogen in E. coli. Mol.,” Microbiol., 9:443-457(1993).
13. Hsu, R. Y., and H. A. Lardy, “Cleland WW. Pigeon liver malic enzyme. V. Kinetic studies,” J. Biol. Chem., 242: 5315-5322 (1967).
14. Hu, w. and C. C. Cheng, “Expression of aequorea green fluorescent protein in plant cells.” FEBS Letters., 369: 331-334 (1995).
15. ornvall, H., B. Persson, M. Krook, S. Atrian, R. Gonzalez-Duarte, J. Jeffery, and D. Ghosh, “Short-chain dehydrogenases/reductases (SDR),” Biochemistry,34: 6003-6013 (1995).
16. Kahana, J., and P. Silver, “Current protocols in molecular biology,” In Ausabel, F.(ed). Green and Wiley, N.Y. (1996).
17. Kuroda, T., N. Okuda, N. Saitoh, T. Hiyama, Y. Terasaki, H. Anazawa, A. Hirata, T. Mogi, I. Kusaka, T. Tsuchiya, I. Yabe, “Patch clamp studies on ion pumps of the cytoplasmic membrane of Escherichia coli,” J. Biol. Chem., 273: 16897-16904 (1998).
18. Kusaka, I., “Growth and division of protoplasts of bacillus megateriumand inhibition of division by pencillin,” J. Bacteriol., 94: 884-887 (1967).
19. Leive, L., “Studies on the permeability chang produced in coliform bacteria by ethylenediaminetetraacetate,” J. Biol. Chem., 243: 2373-2380 (1968).
20. Libby G. Puckett, Jennifer C. Lewis, Leonidas G. Bachas,* and Sylvia Daunert, “Development of an assay for ß-lactam hydrolysis using the pH-dependence of enhanced green fluorescent protein,” Analytical Biochemistry., 309: 224–231 (2002).
21. Li, B., and S. X. Lin, “Fluorescence-energy transfer in human estradiol 17 beta-dehydrogenase-NADPH complex and studies on the coenzyme binding,” Eur. J. Biochem., 235: 180-186 (1996).
22. Matz, M. V., A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, and S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol., 17: 969-973 (1999).
23. McDougald D., L. M. Simpson, J. D. Oliver, and M. Hudson, “Transformation of Vibrio vulnificus by electroporation,” Curren. Microbiol., 28: 289-291 (1994).
24. Meighen, E. A., “Molecular biology of bacterial bioluminescence,” Microbiol Rev., 55: 123-142 (1991).
25. Meighen, E. A., and I. Bartlet, “Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism,” J. Biol. Chem., 255: 11181-11187 (1980).
26. Miksch, G., F. Bettenworth, K. Friehs, and E. Flaschel, “The sequence upstream of the -10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli.” Appl. Microbiol. Biotechnol., 69: 312-320 (2005).
27. Miksch, G., F. Bettenworth, K. Friehs, E. Flaschel, A. Saalbach, and T. W. Nattkemper, “A rapid reporter system using GFP as a reporter protein for identification and screening of synthetic stationary-phase promoters in Escherichia coli.” Appl. Microbiol. Biotechnol., 69: 1-8 (2005).
28. Morin, J. G., and J. W. Hastings, ”Energy transfer in a bioluminescent system,” J. Cell Physiol., 77: 313-318 (1979).
29. Morise, H., O. Shimomura, F. H. Johnson, and J. Winant, “Intermolecular energy transfer in the bioluminescent system ,” Aequorea. Biochemistry., 13: 2656-2662 (1974).
30. Paparella, M., E. Kolssov, B.K. Fleischmenn, J. Hescheler, and S.Bremer, “The use of quantitative image analysis in the assessmentof in vitro embryotoxicity endopoints based on a novel embryonic stem cell clone with endoderm-related GFP expression,” Toxicol. Vitro, 16: 589-597 (2002).
31. Prakash, Y. S, “Fluorescent and Luminescent Probs,” 2nd ed., Academic press, 316-330 (1999).
32. Prescott, Harley, Klein, Microbiology, 5th edition, McGraw Hill, New York, 56-59 (2001).
33. Ran Zhuang, Yuan Zhang, Rui Zhang, Chaojun Song, Kun Yang, Angang Yang, Boquan Jin, “Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography,” Protein Expression and Purification., 59: 138–143 (2008).
34. Schmidt, T. M. , K. Kopecky, and K. H. Nealson, Appl. Environ. Microbiol., 55: 2607-2612 (1989).
35. Shelley R. McRae, Christopher L. Brown, Gillian R. Bushell, “Rapid puriWcation of EGFP, EYFP, and ECFP with high yield and purity,” Protein Expression and Purification., 41: 121–127 (2005).
36. Siegele, D. A., L. Campbell, and J. C. Hu, “Green fluorescent protein as a reporter of transcriptional activity I prokaryotic system,” Methods Enzymol., 305: 499-513 (2000).
37. Su, J.H., Y. C. Chung, Y. C. Tsai, and M. C. Chang, “Cloning and characterization of a blue fluorescent protein from Vibrio vulnificus,” Biochem. Biophys. Res. Commun., 287: 359-365 (2001).
38. Tacket, C. O., F. Brenner, and P. A. Blake, “Clinical features and an epidemiological study of Vibrio vulnificus infections,” J. Infect. Dis., 149: 558-561 (1984).
39. Yang, F., L.G. Moss, and G. N. Jr. Phillips, “The molecular structure of green fluorescent protein.” Nat. Biotechnol., 14: 1246-1251 (1996).
40. Youvan, D.C. and M. E. Michel-Beyerle, “Structure and fluorescence mechanism of GFP,” Nat. Biotechnol., 14: 1219-1220 (1996).
41.李瑞俞, 以生物取像系統探討在不同培養條件下之基因重組大腸桿菌內涵體的形成, 成功大學化學工程研究所碩士論文, 1-21 (2007).
42.袁道成, 創傷桿菌感測及反應雙因子調控系統對血清、抗菌蛋白及嗜中性球抗性之探討, 成功大學生物化學暨分子生物學研究所碩士論文, 22-56 (2005).
43.陳俊吉, 利用回應曲面法探討添加胺基酸對肌酸酵素生產之影響, 成功大學化學工程研究所碩士論文, 3-6 (2003).
44.游象淳, 創傷弧菌藍色螢光蛋白在基因重組大腸桿菌生物取像系統應用之研究, 成功大學化學工程研究所碩士論文, 44-60 (2008).
45.劉再鈜, 創傷弧菌藍色螢光蛋白應用於革蘭氏陰性菌巨大原生質體發光特性之研究, 成功大學化學工程研究所碩士論文, 1-18 (2006).
46.劉智偉, 創傷弧菌之藍色螢光蛋白應用於革蘭氏陰性菌生物取像系統之研究, 成功大學化學工程研究所碩士論文, 15-27 (2005).
47.鄧怡芳, 創傷弧菌致病因子之研究, 成功大學生物科技研究所碩士論文, 7-30 (2004).