簡易檢索 / 詳目顯示

研究生: 張慧蓓
Chang, Hui-Pei
論文名稱: 排煙與水霧系統對隧道火災影響之研究
Effect of the Smoke Exhaust and Spray System on Tunnel Fires
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 縮小尺寸實驗全尺度實驗臨界風速FDS隔音屏蔽
外文關鍵詞: Model scale experiment, full scale experiment, critical velocity, FDS, Acoustic barrier
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隧道中的安全防護研究為通風設計、撒水設備、風速(逆煙層)、延燒現象為主要研究;長隧道中多以機械通風為主,但於短隧道則以自然通風為主則較少被討論,故本研究以結構特殊的台北捷運之類短隧道來討論自然通風,而台灣因雪山隧道發生火災而重新檢視撒水對於隧道的效能,本研究以首次應用於台灣隧道水霧系統探討其效能。
    城市之短隧道一般以自然通風控制煙層,在高架捷運系統上則為了隔離噪音建置類似隧道之隔音牆,但因成本與結構之考量,對於頂上開口面積之設計一直未能有可遵循之依據。因此本研究選用較特殊的隧道形式來探討自然排煙以供未來都市淺隧道排煙可有設計建議之依循。研究使用FDS來模擬整個隔音屏障之隧道內設定不同熱釋放率和不同節數車廂發生火災的情境來觀察火災產生的煙霧層對人員撤離的影響。這項研究使用了一個1000米的整個罩式隔音牆,先進行沒有排煙口的討論,發現當熱釋放率為10,20,30和40 MW時,撤離證明是無效的。然而,在屏障頂部使用不同大小的開口的情況下,且更改不同的熱釋放率進行模擬,或對乘客和車廂的數量進行了改變,設定了所有乘客可以在這些不同情況下撤離; 研究結果導出一個應用公式,其可作為設計高架MRT系統罩式隔音牆的自然通風口時可作為參考。
    台灣於2012年發生雪山隧道(12.6km)火災,其採用縱流式通風系統,上游之濃煙獲得控制,但仍有部份煙層進入下游及導坑,仍可能造成環境高溫及逃生危害。目前蘇花改公路隧道將增設水霧系統以控制環境溫度,但對於撒水效應是否可達到隧道火災救災的最佳控制,亦為本研究重要目的之一。首先設計在6 m2的油池火災中,每隔5米安裝一個側壁式水霧噴嘴,壓力為3.43bar,水流速度為360 lpm,不僅能將火焰正下方的溫度降低到30秒內低於500℃,隧道頂部溫度也降至300℃以下,熱通量降至1 kw/m2以下,阻止了隨後的火災蔓延。此外,150秒後火焰的能見度恢復到25m以上。因此若使用高壓高流速之側壁式水霧系統可以不需要關閉隧道即可以隨時維護修理,同時撒水時也可噴撒到另一側牆壁,為隧道提供足夠的壁面冷卻,可有效應用於隧道的救援和保護。

    In tunnels, safety and research protection has been primarily focused towards ventilation design, water spray equipment, critical wind velocity, fire spread etc. Long tunnels mainly utilize forced ventilation, and has thoroughly studied throughout the years. This research in turn placed its focus on the less discussed acoustic barriers of the Taipei MRT (pseudo-tunnel), and used FDS simulations to discuss natural ventilation. Also, Hsuehshan tunnel, a long tunnel in Taiwan, reconsidered the effects of water spray in tunnels due to fire occurrences. This research therefore analyzed the applicability of a water spray system in a full scale tunnel fire test, which was a first in Taiwan. With personnel evacuation as the main consideration, different HRR and different sized openings in the ceiling of the acoustic barriers (pseudo tunnel) allowed for derivation of an applicable formula. In tunnels, high pressure and high flow rate side wall water spray systems allowed for easy maintenance, while the range of water spray supplied sufficient cooling of the tunnel walls to protect the tunnel structure, which showed that it can indeed be used for evacuation within and protection of tunnels.

    摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的 3 1.3 研究範圍概述 4 1.4 研究流程 6 第二章 文獻回顧與探討 7 2.1自然通風系統相關文獻探討 8 2.1.1都市淺層隧道自然通風 8 2.1.2捷運高架系統隔音牆類隧道 8 2.2 水霧系統於隧道影響之文獻探討 10 2.2.1 隧道通風系統概述 10 2.2.2 隧道火災溫度文獻探討 12 2.2.3隧道火災氣體溫度探討 17 2.2.4 隧道火災與風速文獻探討 22 2.2.5 隧道混凝土爆裂(Spalling of Concrete)探討 25 2.2.6隧道之排煙模式與燃燒之影響 27 2.2.7隧道火載量(HRR)之關係 28 2.2.8 水霧系統應用於隧道文獻探討 33 第三章 研究方法 36 3.1自然排煙系統實驗設計 36 3.1.1 CFD simulation 36 3.1.1.1 FDS模擬軟體介紹 36 3.1.1.2 FDS應用差異 37 3.1.1.3 FDS+EVAC 介紹 39 3.1.1.4 電腦規格 39 3.1.1.5 電腦模擬設計方法: FDS+Evac 參數 40 3.2 水霧系統於全尺度隧道火災實驗設計 45 3.2.1 隧道結構防護規劃 46 3.2.2 水霧系統設置 47 3.2.3 火源設置 49 3.2.4 測試儀器 51 3.2.4.1 熱電偶架設 51 3.2.4.2 輻射熱量計 52 3.2.4.3 能見度測量 52 3.2.4.4 CO偵測器設置 53 3.2.5 實驗設計 53 第四章 結果與討論 55 4.1 高架捷運系統隔音牆隧道之自然通風系統 55 4.1.1 1000m和1500m隔音牆長度模擬結果(四個車廂) 55 4.1.2 在1000公尺隔音牆中之不同寬度的排煙口 56 4.2 水霧系統在隧道測試性能結果與討論 61 4.2.1火源熱釋放率7.5 MW之測試結果 61 4.2.1.1 天花板下方5公分溫度測量結果 61 4.2.1.2 距地面1.8公尺高之溫度 63 4.2.1.3 輻射熱測量結果 65 4.2.1.4 能見度與CO濃度測量結果 65 4.2.2 火源熱釋放率12.9 MW之測試 67 4.2.2.1 天花板下方5公分溫度 67 4.2.2.2 距地面1.8公尺高之溫度 68 4.2.2.3 輻射熱測量結果 70 4.2.2.4 能見度與CO濃度測量結果 71 4.2.3 火源熱釋放率25.1 MW之測試結果(實驗一) 72 4.2.4 火源熱釋放率25.1 MW之測試結果(實驗二) 73 4.2.5 火源熱釋放率25.1 MW之測試結果(實驗三) 75 4.2.6 火源熱釋放率25.1 MW之測試結果(實驗四) 78 4.2.6.1 天花板下方5 公分溫度 78 4.2.6.2距地面1.8公尺高之溫度 80 4.2.7 火源熱釋放率25.1 MW之測試結果(實驗五) 81 4.2.7.1 天花板氣體溫度 81 4.2.7.2 高於地面1.8公尺之氣體溫度 85 4.2.7.3 輻射熱測量結果 87 4.2.7.4 能見度和二氧化碳測量結果 87 第五章 結論與建議 90 參考文獻 92 附錄一 98 附錄二 101

    何三平、簡賢文與沈子勝,臺北都會區大眾捷運系統捷運廠站消防安全設備設置規範與技術研究報告書(第一期),台北市政府捷運工程局,第77-86頁,2012。
    沈子勝,隧道火災緊急救援滅火設施之研究,交通部台灣區國道新建工程局,Vol.146,128-132,2006。
    卓子揚, 隧道火災排煙模式與火源位置及車輛模式對臨界風速之效應探討. (碩士),
    國立高雄第一科技大學, 高雄市,2011。
    施亮輝, 邱豪磊, & 林啟基. (2011). 公路隧道排煙與避難逃生系統之整合應用. 中華
    技術, 91, 132-143.
    簡賢文,蘇花改緊急應變計畫專題研究成果報告,交通部公路總局及台灣世曦工程顧問股份有限公司委託研究,(2013).
    簡賢文與黃伯達,雪山隧道重大火災緊急應變暨救援指揮計畫之探討(上),消防與防災科技雜誌, Vol.23,(2006)。
    嚴智傑. (1995). 公路隧道通風設計研究嚴智傑. (1995). 公路隧道通風設計研究台北.
    中興工程顧問社. 中興工程顧問社.
    Beard, A., Carvel,R., The handbook of tunnel fire safety. (London), 42-60.2005
    Bergqvist, A.,What can the fire brigade do about catastrophic tunnel fires? International Symposium on Catastrophic Tunnel Fires (CTF), Borås, Sweden.161-175, 2003.
    Chen, L.F., Hu, L.H., Zhang, X.L.,Zhang, X.Z., Zhang, X.C., Yang, L.Z., Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source. Applied Thermal Engineering ,Vol.78, 129-135, 2015.
    Chen, L.F., Hu, L.H., Tang, W., Yi, L., Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires. Fire Safety Journal, Vol.59. 94-101, 2013.
    Chen, Y.H., Chuah, Y.H., Fire dynamics simulation for subway car fire in tunnel. National Taipei University of Technology Vol. 6, 21-26 , 2004.
    Chen, L.F., Hu, L.H., Zhang, X.L.,Zhang, X.Z., Zhang, X.C., Yang, L.Z., Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source. Applied Thermal Engineering , Vol.78, 129-135, 2015.
    EUREKA-Project EU499, F., Fires in Transport Tunnels: Report on full-scale tests.
    Studiengesellschaft Stahlanwendung e.V., Dusseldorf , 1995.
    NFPA502. Standard for Road Tunnels, Bridges, and Other Limited Access Highways, 2011.
    Haack, A. Fire protection in traffic tunnels: Resu of EUREKA research project EU 499
    FIRETUN. IABSE reports. 217-223 , 1998.
    Harish, R., Venkatasubbaiah, K., Effects of buoyancy induced roof ventilation systems for smoke removal in tunnel fires. Tunnelling and Underground Space Technology . Vol.42, 195-205 , 2014.
    Hill, K., Dreisbach, J., Joglar, F., Najafi, B., McGrattan, K., Peacock, R. and Hamins , A., Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications. NUREG 1824, United States Nuclear Regulatory Commission, Washington, DC(2007).
    Hu, L., Peng, W., Huo, R. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel. Journal of Hazardous Materials . Vol.150. 68-75 , 2008a.
    Hu, L.H., Chen, L.F., Tang, W., A global model on temperature profile of buoyant ceiling gas flow in a channel with combining mass and heat loss due to ceiling extraction and longitudinal forced air flow. International Journal of Heat and Mass Transfer . Vol.79, 885-892 , 2014.
    Hu, L.H., Huo, R., Chow, W.K., Studies on buoyancy-driven back-layering flow in tunnel fires. Experimental Thermal and Fluid Science , Vol.32, No.8, 1468-1483 , 2008b.
    Ingason, H., Proceedings of the International Symposium on Catastrophic Tunnel Fires. SP Swedish National Testing and Research Institute, Borås, Sweden , 2003.
    Ingason, H., Li, Y.Z., Appel, G., Lundström, U., Becker, C. Large Scale Tunnel Fire Tests with Large Droplet Water-Based Fixed Fire Fighting System. Fire Technology, 1-20 ,2015.
    ITA-AITES. Guidelines for structural fire resistance for road tunnels". International
    Tunneling Association , 10-15, 2003.
    Kelly, A., Giblin, P.E., The memorial tunnel fire ventilation test program. ASHRAE Journal . Vol.39 ,26-30 , 1997.
    Kashef, A., Yuan, Z., Lei, B., Ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation. Fire Safety Journal . Vol.62 ,Part C, 249-255 2013.
    KIVI., Ventilation of Road Tunnels. Royal Institute of Engineers . Netherlands , 1993.
    Korhonen, T., Hostikka, S., Fire Dynamics Simulator with Evacuation: FDS+ Evac. VTT Technical Research Centre of Finland Fire Dynamics Simulator with Evacuation, 2010.
    Li, J.S.M., Chow, W.K., Numerical studies on performance evaluation of tunnel ventilation safety systems. Tunnelling and Underground Space Technology. Vol.18 , 435-452 2003.
    Li, Y.Z., Lei, B., Ingason, H., The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Safety Journal . Vol.46 . 204-210 , 2011.
    Lee, S.R., Ryou, H.S. A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires for Different Aspect Ratio. Building and Environment. Vol.41, 719-725 2006.
    Lönnermark, A., Ingason, H., Large Scale Fire Tests in the Runehamar Tunnel-Gas Temperature and Radiation, Fire Safety Journal . Vol.71, 134–149 , 2003.
    Lönnermark, A., Ingason, H., Gas temperatures in heavy goods vehicle fires in tunnels.
    Fire Safety Journal . Vol.40 , 506-527, 2005.
    Li, Y.Z., Ingason, H., Model scale tunnel fire tests with automatic sprinkler. Fire Safety Journal. Vol.61. 298-313 , 2013.
    McGrattan, K., Hostikka, S., Floyd, J., Baum, H., Rehm, R., Mell, W., McDermott, R., Fire dynamics simulator (version 5), technical reference guide. NIST special publication 1018. 5 ,2004.
    McGrattan, K., Hostikka, S., Floyd, J.E., "Fire dynamics simulator (version 5), user’s guide". NIST special publication 1019. 1-186 ,2010.
    McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K., Fire dynamics simulator, user’s guide. National Institute of Standards and Technology, Gaithersburg, Maryland, USA, and VTT Technical Research Centre of Finland, Espoo, Finland. Vol.36. 40, 2013 .
    Meng, N., Hu, L., Wu, L., Yang, L., Zhu, S., Chen, L., Tang, W., Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station. Tunnelling and Underground Space Technology . Vol.40 . 151-159 , 2014.
    NEXCO's Standard Design Specifications Vol. 3 Tunnels , 2012 .
    Mu, N., Song, W.G., Qi, X.X., Lu, W., Cao, S.c., Simulation of Evacuation in a Twin Bore Tunnel Analysis of Evacuation Time and Egress Selection. Procedia Engineering . Vol.71. 333-342 , 2014.
    NFPA 130. Standard for fixed guideway transit and passenger rail systems. National Fire Protection Association , 2010.
    Olst, D., Bosch, R. "Protecting the Runehamar tunnel in Norway with Promatec®^- T
    against multiple fires, as part of the UPTUN research programme, PROMAT BV.
    Tunnel fire protection, The Netherlands , 2003.
    Oka, Y., Atkinson,G.T., Control of Smoke Flow in Tunnel Fires. Fire Safety Journal, 25, 305‐322. 1995.
    PIARC. Technical Committee on Road Tunnels : Report of the XVIIIth World Road
    Congress, Brussels . Vol.138 ,1987.
    PIARC. Fire and Smoke Control in Road Tunnels. PIARC Ref. 05.05.BEN, PIARC,
    ISBN : 2-84060-064-1. PARIS.FRANCE. 290 ,1999.
    Purser, D.A., Toxicity assessment of combustion products. SFPE handbook of fire protection engineering . Vol.3. 2-6 , 2002.
    Prˇibyl, P., Prˇibyl, O.e. Effect of tunnel technological systems on evacuation time. Tunnelling and Underground Space Technology . Vol.44. 88-96 (2014).
    Roha, J.S., Yanga , S.S., Ryoua,H.S., Yoonb,M.O., Jeongc,Y.T., An experimental study on the effect of ventilation velocity on burning rate in tunnel fires—heptanes pool fire case. Building and Environment, 43, 1225-1231. 2008.
    Sun, J., Fang, Z., Tang, Z., Beji, T., Merci, B., Experimental study of the effectiveness of a water system in blocking fire-induced smoke and heat in reduced-scale tunnel tests. Tunnelling and Underground Space Technology . Vol.56. 34-44 , 2016.
    Subway Environmental Design Handbook(SEDH). Subway Environment Simulation Computer Program. Version 4 .Part 1:User’s Manual, U.S. Dept. of Transportatio .Volume Ⅱ, 1997.
    Ura, F., Kawabata, N., Tanaka, F., Characteristics of smoke extraction by natural ventilation during a fire in a shallow urban road tunnel with roof openings. Fire Safety Journal. Vol.67, 96-106 , 2014.
    Wang, Y., Jiang, J., Zhu, D., Full-scale experiment research and theoretical study for fires in tunnels with roof openings. Fire safety journal . Vol.44, 339-348 , 2009.
    Wu, Y., Bakar, M.A., Control of smoke flow in tunnel fires using longitudinal ventilation
    systems–a study of the critical velocity. Fire Safety Journal . Vol.35, 363-390, 2000.
    Yuan, Z., Lei, B., Kashef, A., Reduced-scale Experimental Research on Fires in Tunnels with Natural Ventilation. Procedia Engineering . Vol.62 , 907-915, 2013.

    下載圖示 校內:2022-06-07公開
    校外:2022-06-07公開
    QR CODE