| 研究生: |
李灝 Li, Hao |
|---|---|
| 論文名稱: |
具定電壓輸出之擺錘式波浪獵能器 Pendulum-Type Wave Energy Harvester with Constant Voltage Output |
| 指導教授: |
陳永裕
Chen, Yung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 擺錘式 、磁鐵排列設計 、回授線性化 、定電壓輸出 、配重塊移動系統 |
| 外文關鍵詞: | Pendulum-type, magnetic circuits design, feedback linearization, constant voltage output, moving control system of weight block |
| 相關次數: | 點閱:113 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人類社會中,電力一直是非常重要的需求,但利用非再生能源在產生電力時會排放出對環境影響的汙染物。在環保意識逐漸抬頭的現今,各國於利用綠色能源來產生電力的發展投入了不少資源。綠色能源種類可分為太陽能,風能,地熱能,及海洋能等,而海洋大約佔了地球總面積約70%,蘊藏了大量豐富的能量,相信對於擷取海洋綠色能源的研究可提供極多的研究素材,波浪能即為相當重要的一個例子,目前全球對於擷取海洋綠色能源的波浪發電裝置種類約有六大種,分別為: 1.震盪水柱式 2.越波式 3.點吸收式 4.潛沒壓差式 5.衝擊式以及6.衰減式。本研究提出一款不同於這六大類型的波浪獵能器,主要利用海浪造成裝置產生橫搖運動,透過擺臂帶動末端具偏心量的獵能器轉子轉動,最後利用偏心量的設計來提高擷取的效率。本論文分為: 1.機械部分:擺錘與圓盤系統之間相互運動系統模型的分析 2.電磁感應部分:兩種不同磁鐵排列之磁路分析以及在不同情況下其發電量模擬分析3.繪製小型獵能器之3D模型 4.增加回授線性化控制法控制偏心量使圓盤以穩定的角速度旋轉,在本研究中,發電裝置的磁鐵排列方式選定了兩種類型Halbach array 和Multipolar,先利用有限元素分析軟體模擬並比較兩者之間對於產生電力的優劣性及發電效果,在本研究的第五章節,增加了回授線性化控制法來分析及模擬如何透過配重塊偏心量的設計來使得轉子能夠有更佳的轉動效果,目標是以設定特定追蹤的角速度下等速旋轉使其能夠產生較多的轉動機械能並輸出穩定的電壓。
Requirement of electricity increases due to the energy consumptions of people in normal life, and the lack of energy become an important issue of most of countries. However, the use of non-renewable energy resources in generating electricity will spread out pollutions that strongly impact environment. Today, environment protection consciousness gains ground, many countries in the world invest many resources to develop power generation systems which will generate green energy. The green energy resource categories generally include: solar energy, wind energy, geothermal energy, ocean energy, etc. The ocean covers more than 70% of the earth and contain abundant resources. It is believed that the research of capturing ocean energy will be a considerable and feasible direction.
The device of power generation of ocean energy in current world can be divided into about six types: 1. Oscillating water column, 2. Overtopping, 3. Point absorber, 4. Submerged pressure differential, 5. Oscillating wave surge and 6. Attenuator. This thesis proposes a novel design that is different from these six types of energy harvester. The proposed energy harvester utilizes the rolling motion of the pendulum which caused by the wave to drive the rotor that arranged on the end of the pendulum. The overall design procedure of the proposed method can be separated into four parts as follows: 1. Mechanical part: analyzing of the mutual movements between the pendulum and the energy harvester system. 2. Electrical part: analyzing the arrangement consisted of the magnets, and simulating the power generation in different conditions. 3. Drawing the 3D prototype of the small size energy harvester. 4. Using feedback linearization control method to control the eccentric position and make the rotor rotate at constant angular velocity. In this research, two types of magnet arrangements: Halbach array and Multipolar are selected for the purpose of achieving the maximum power transformation between mechanical power and the electrical power. In chapter 5 of this thesis, a new idea for generating electrical power is investigated with a sub-actuated system which is built up with a moving eccentric mass controlled by a feedback linearization control method. This control aid design fine tune the weight block’s real-time position to achieve a better rotation effect of the rotor and control the output voltage to let it be a desired constant value. Finally, the comparisons of this proposed method with a large size scale is discussed with several existing wave type energy harvesters. This proposed design really delivers superior wave harvesting property than others and is easily built up.
REFERENCES
[1] Y. J. Wang, C. D. Chen and C. K. Sung, “System design of a weighted-pendulum-type electromagnetic generator for harvesting energy from a rotating wheel”, IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 2, pp. 754-763, 2013.
[2] Y. J. Wang, C. D. Chen and C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel”, ELSEVIER Sensors and Actuators A: Physical, Vol 159, pp. 196-203, 2010.
[3] D. Elwood, S. C. Yim, J. Prudell and C. Stillinger, “Low-power autonomous wave energy capture device for remote sensing and communications applications”, IEEE Int. Conf. on Energy Conversion Congress and Exposition, Atlanta, Georgia, USA, pp 2392-2396, Sep, 2010.
[4] T. T. Toh, P. D. Mitcheson, L. Dussud, S. W. Wright and A. S. Holmes, “Electronic resonant frequency tuning of a marine energy harvester”, PowerMEMS, Vol. 1, No. 1, pp. 383-386, 2011.
[5] C. X. Lu, C. C. Wang, C. K. Sung and P. C. P. Chao, “Dynamic analysis of a motion transformer mimicking a hula hoop”, ASME Journal of Vibration and Acoustics, Vol. 133, No. 1, pp. 014501-014501, 2011.
[6] C. H. Lu, Y. J. Wang, C. K. Sung and P. C. P. Chao, “A Hula-hoop energy-harvesting system”, IEEE Transactions on Magnetics, Vol. 47, No. 10, pp. 2395-2398, 2011.
[7] Y. J. Wang, C. D. Chen, C. K. Sung and C. Li, “Natural frequency self-tuning energy harvester using a circular Halbach array magnetic disk”, Journal of Intelligent Material Systems and Structures, Vol. 23, No. 8, pp. 933-943, 2012.
[8] W. Robertson, B. Cazzolato and A. Zander, “Parameters for optimizing the forces between linear multipole magnet arrays”, IEEE Magnetics Letters, Vol. 1, No. 1, pp. 0500304-0500304, 2010.
[9] J. Wang and D. Howe, “Tubular modular permanent-magnet machines equipped with quasi-Halbach magnetized magnets-part I: magnetic field distribution, EMF, and thrust force”, IEEE Transactions on Magnetics, Vol. 41, No. 9, pp. 2470-2478, 2005.
[10] F. O. Falcao, “Wave energy utilization: A review of the technologies”, ELSEVIER Renewable and Sustainable Energy, Vol. 14, No. 3, pp. 899-918, 2010.
[11] R. B. Ummaneni, R. Nilssen and B. J. Eirik, “Convert low frequency energy from wave power plant to high frequency energy in linear electrical generator with gas springs”, IEEE Int. Conf. on Energy Conversion Congress and Exposition, New Delhi, India, Oct, 2008.
[12] N. Okada, H. Fujimoto, S. Yabe and M. Murai, “Experiments on floating wave-power generation using piezoelectric elements and pendulums in the water tank”, IEEE Int. Conf. on Oceans, Yeosu, Korea, pp. 1-8, May, 2012.
[13] I. López, J. Andreu, S. Ceballos and I. M. Alegría, “Review of wave energy technologies and the necessary power-equipment”, ELSEVIER Renewable and Sustainable Energy Reviews, Vol. 27, pp. 413-434, 2013.
[14] D. Elwood, S. C. Yim, J. Prudell, C. Stillinger, A. V. Jouanne, T. Brekken, A. Brown and R. Paasch, “Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off”, ELSEVIER Renewable Energy, Vol. 35, No. 2, pp. 348-354, 2010.
[15] E. Lejerskog, C. , L. Hai, R. Waters and M. Leijon, “Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site”, ELSEVIER Renewable Energy, Vol. 77, pp. 9-14, 2015.
[16] D. Vale´rio, P. Beira˜o and J. S. Costa, “Optimisation of wave energy extraction with the archimedes wave swing”, ELSEVIER Ocean Engineering, Vol. 34, No. 17, pp. 2330-2344, 2007.
[17] R. Henderson, “Design, simulation, and testing of a novel hydraulic power take off system for the Pelamis wave energy converter”, ELSEVIER Renewable Energy, Vol. 31, No. 2, pp. 271-283, 2006.
[18] T. J. T. Whittaker, D. Collier, M. Folley, M. Osterried, A. Henry and M. Crowley, “The development of Oyster - a shallow water surging wave energy converter”, Paper presented at 7th European Wave and Tidal Energy Conference, Porto, Portugal, Jan, 2007.
[19] M. Folley, T. W. T. Whittaker and J. van´t Hoff, “The design of small seabed-mounted bottom-hinged wave energy converters”, Paper presented at 7th European Wave and Tidal Energy Conference, Porto, Portugal, Jan, 2007.
[20] J. P. Kofoed, P. Frigaard, E. Friis-Madsen and H. C. Sørensen, “Prototype testing of the wave energy converter wave dragon”, ELSEVIER Renewable Energy, Vol. 31, No. 2, pp. 181-189, 2006.
[21] F. O. Falcão and C. C. Henriques, “Oscillating-water-column wave energy converters and air turbines: A review”, ELSEVIER Renewable Energy, Vol. 85, pp. 1391-1424, 2016.
校內:2021-09-01公開