簡易檢索 / 詳目顯示

研究生: 張哲維
Zhang, Zhe-Wei
論文名稱: 鋅錫氧化物與有機駢苯衍生物光偵測器之變溫光突觸行為研究
Temperature-Dependent Photosynaptic Behavior of Zinc–Tin Oxide and Organic Perylene Diimide Photodetectors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 125
中文關鍵詞: 金屬氧化物十三烷基駢苯衍生物(PTCDI-C13)光致電導仿生突觸類神經形態運算
外文關鍵詞: metal oxide, PTCDI-C13, Photoconductivity, artificial synapse, neuromorphic computing
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製作鋅錫氧化物(Zinc Tin Oxide, ZTO)單層與ZTO / (N,N’-Ditridecylperylene-3,4,9,10-tetra-carboxylic diimide, PTCDI-C13)雙層為主動層之光偵測器,探討其在不同環境溫度(25-150 °C)下,對綠光和紫外光的感測和仿突觸學習行為,並使用手寫辨識平台進行圖形辨識驗證仿神經形態的計算潛力。
    採用溶液製程製作ZTO氧化物底層,利用物理氣相沉積PTCDI-C13上層,製作ZTO / PTCDI-C13雙層堆疊主動層,利用紫外-可見光光譜、光激發螢光光譜、X光繞射儀(簡稱XRD)、和X光光電子能譜(簡稱XPS)進行薄膜特性分析,並探討溫度對元件的光電特性的影響。在實驗的溫度範圍下, ZTO 吸收波段未有明顯變化,而PTCDI-C13薄膜的0-0 電子躍遷則隨溫度上昇出現部份不可逆藍移現象,可歸因於加熱對其薄膜微結構的改變, XRD量測也證實變溫對PTCDI-C13的結晶繞射峰產生不可逆變化。ZTO單層與ZTO / PTCDI-C13雙層均觀察到熱擾動致光激發螢光淬滅效應。XPS分析指出ZTO單層在變溫下,會發生脫附與吸附氧缺陷的可逆反應,而ZTO / PTCDI-C13雙層的氧鍵結未觀察到明顯變化。單層與雙層元件在未照光與照光下,均發現元件的電流隨溫度上昇而增加,當照射紫光時,可明顯增益高溫下的電流輸出,並提昇電流的記憶持久力,相較之下,照射綠光時,元件的電流輸出僅有小幅增加,且呈現無記憶特性的數位式反應。
    將元件的紫外光感知特性應用於模擬神經突觸行為。在單脈衝光刺激下,單層與雙層元件皆可模擬興奮型突觸後電流(簡稱EPSC),且在不同溫度下表現出不同的EPSC與光脈衝寬度的相依性。當使用雙脈衝光刺激時,元件則表現出成對脈衝促進(簡稱PPF),當達100 °C 時有最穩定的PPF 比值。進行多脈衝光刺激時,元件在不同溫度下表現出迥異的長期增益 / 長期抑制行為(簡稱LTP / LTD),在100 °C 時LTP / LTD 行為表現出最佳的線性度與動態範圍。最後,將元件的光感知特性應用至手寫辨識平台進行圖形辨識模擬,發現隨環境溫度改變,元件也表現出不同的辨識能力,將有機會應用在需要感知溫度的仿神經形態的計算。

    We fabricated zinc tin oxide (ZTO) single-layer and ZTO/N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI) bilayer photodetectors to study temperature-dependent (25 ~ 150 °C) photoresponse and synaptic behaviors under UV light and green light illumination. The characteristics of the ZTO and ZTO/PTCDI films were analyzed using UV–visible spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), while the influence of temperature on the devices’ optoelectronic properties was also investigated. The results indicate that the ZTO/PTCDI bilayer films exhibit partially irreversible microstructural changes. XPS revealed reversible oxygen desorption and vacancy interconversion in the ZTO film. Both devices showed increasing dark and photocurrents with rising temperature. Under UV illumination, the devices exhibited greatly enhanced current and retention characteristics at elevated temperatures, whereas green light induced a much smaller current enhancement without noticeable memory behavior. Upon UV light pulse stimulation, the devices emulated excitatory postsynaptic currents and demonstrated temperature-dependent long-term potentiation/depression behavior. Finally, handwriting recognition simulations confirmed temperature-dependent recognition accuracy, highlighting the potential of ZTO-based devices for temperature-adaptive in-sensor neuromorphic computing.

    中文摘要I Extended AbstractIII 致謝IX 目錄XI 表目錄XV 圖目錄XVI 1 第一章 緒論1 1-1 鋅錫氧化簡介1 1-2有機半導體簡介2 1-3研究動機3 2 第二章 有機與氧化物半導體概論與應用4 2-1 非晶氧化物簡介4 2-2 二極體簡介4 2-3 光偵測器簡介5 2-4 神經突觸簡介6 2-4-1 成對脈衝促進與成對脈衝抑制7 2-4-2 突觸可塑性7 2-5 光突觸簡介8 2-6 類神經形態運算概述9 3 第三章 實驗方法與分析工具14 3-1 實驗材料14 3-1-1 基板14 3-1-2 前驅物14 3-1-3 有機半導體14 3-1-4 金屬電極15 3-1-5 有機溶劑15 3-2 元件製程15 3-2-1 基板清潔15 3-2-2 主動層16 3-2-3 電極16 3-2-4 有機半導體主動層17 3-3 製程儀器介紹17 3-3-1 旋轉塗佈機17 3-3-2 高真空電漿蝕刻系統18 3-3-3 高溫爐18 3-3-4 物理氣相沉積儀18 3-4 分析儀器介紹19 3-4-1 半導體參數分析儀19 3-4-2 光脈衝量測系統20 3-4-3 紫外-可見光光譜儀 (UV-vis spectroscopy)21 3-4-4 X光光電子能譜儀 (X-ray photoelectron spectrometer, XPS)21 3-4-5 X光繞射儀 (X-Ray Diffractometer, XRD)22 3-4-6 光激發螢光光譜儀 (Photoluminescence, PL)22 4 第四章 實驗結果與討論28 4-1 前言28 4-2 ZTO與ZTO / PTCDI-C13薄膜界面分析28 4-2-1 吸收光譜分析28 4-2-2 光激發螢光分析29 4-2-3 X光光電子能譜分析30 4-2-4 X光繞射分析31 4-3 ZTO光偵測器電特性分析32 4-3-1 溫度相依之暗電流分析32 4-3-2 溫度相依之紫外光電流分析33 4-3-3 溫度相依之綠光電流分析34 4-3-4 溫度相依之暗電流與時間分析35 4-3-5 單紫外光脈衝下突觸電流之溫度相依分析36 4-3-6 雙紫外光脈衝下突觸後電流之溫度相依分析37 4-3-7 多綠光脈衝下突觸後電流之溫度相依分析38 4-3-8 多紫外光脈衝下突觸後電流之溫度相依分析39 4-4 ZTO / PTCDI-C13光偵測器電特性分析41 4-4-1 溫度相依之暗電流分析41 4-4-2 溫度相依之紫外光電流分析42 4-4-3 溫度相依之綠光電流分析43 4-4-4 溫度相依之暗電流與時間分析43 4-4-5 單紫外光脈衝下突觸後電流之溫度相依分析44 4-4-6 雙紫外光脈衝下突觸後電流之溫度相依分析45 4-4-7 多綠光脈衝下突觸後電流之溫度相依分析46 4-4-8 多紫外光脈衝下突觸後電流之溫度相依分析46 4-5 ZTO元件與PTCDI-C13堆疊架構之辨識率模擬48 5 第五章 結論與未來展望95 5-1 結論95 5-2 未來展望96 參考文獻97

    [1] S. Spasova, V. Dulev, A. Benkovsky, V. Palankovski, E. Radeva, R. Stoykov, Z. Nenova, H. Dikov, A. Katerski, O. Volobujeva, D. Lilova, and M. Ganchev, "Deposition and Characterization of Zinc–Tin Oxide Thin Films with Varying Material Compositions." Coatings 15, 2 (2025): 225.
    [2] J. Seo and H. Yoo, "Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials." Membranes 12, 5 (2022): 485.
    [3] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances." Advanced Materials 24, 22 (2012): 2945–2986.
    [4] R. Ocaya. A, Al-Ghamdi, F. El-Tantawy. W.A, Farooq. F. Yakuphanoglu. "Thermal sensor based zinc oxide diode for low temperature applications" Journal of Alloys and Compounds 674 (2016): 277-288.
    [5] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene." Physical Review Letters 39 (1977): 1098–1101.
    [6] H. Naarmann and N. Theophilou, "New Process for the Production of Metal-Like, Stable Polyacetylene." Synthetic Metals 22, 1 (1987): 1–8.
    [7] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film." Applied Physics Letters 49, 18 (1986): 1210–1212.
    [8] A. Tsumura, H. Koezuka, and T. Ando, "Polythiophene Field-Effect Transistor: Its Characteristics and Operation Mechanism." Synthetic Metals 25, 1 (1988): 11–23.
    [9] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, "Light-Emitting Diodes Based on Conjugated Polymers." Nature 347, 6293 (1990): 539–541.
    [10] S. R. Forrest, "The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic." Nature 428 (2004): 911–918.
    [11] H. Sirringhaus, "Device Physics of Solution-Processed Organic Field-Effect Transistors." Advanced Materials 17, 20 (2005): 2411–2425.
    [12] M. Lee, W. Lee, S. Choi, J.-W. Jo, J. Kim, S. K. Park, and Y.-H. Kim, "Brain-Inspired Photonic Neuromorphic Devices Using Photodynamic Amorphous Oxide Semiconductors and Their Persistent Photoconductivity." Advanced Materials 29, 28 (2017): 1700951
    [13] J. Kim, S. Song, H. Kim, G. Yoo, S. S. Cho, J. Kim, S. K. Park, Y. H. Kim, "Light-stimulated artificial photonic synapses based on solution-processed In-Sn-Zn-O transistors for neuromorphic applications" Journal of Alloys and Compounds, Volume 903 (2022): 163873.
    [14] J. H. Kim, J. Choi, H. Na, S. N. Lee, " High-Efficiency ZnO-Based Ultraviolet Photodetector with Integrated Single-Walled Carbon Nanotube Thin-Film Heater." Advanced Materials Interfaces Volume 10,Issue 17 (2023): 2300176.
    [15] T. Kamiya and H. Hosono, "Material Characteristics and Applications of Transparent Amorphous Oxide Semiconductors." NPG Asia Materials 2, (2010): 15–22.
    [16] J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, "Review of Recent Developments in Amorphous Oxide Semiconductor Thin-Film Transistor Devices." Thin Solid Films 520, 6 (2012): 1679–1693.
    [17] C.-Y. Huang, K.-C. Chen, and C.-J. Chang, "Realization of a self-powered ZnSnO MSM UV photodetector that uses surface state controlled photovoltaic effect." Ceramics International 47, 2 (2021): 1785–1791.
    [18] F. Braun, "Ueber die Stromleitung durch Schwefelmetalle." Annalen der Physik und Chemie 153, 4 (1874): 556–563.
    [19] W. Shockley, "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors." Bell System Technical Journal 28, 3 (1949): 435–489.
    [20] H. A. Bethe, "Theory of the Boundary Layer of Crystal Rectifiers." Massachusetts Institute of Technology, Radiation Laboratory Report 43-12 (1942).
    [21] W. Smith, "Effect of Light on Selenium During the Passage of an Electric Current." Nature 7 (1873): 303.
    [22] S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin, "Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors." Nanoscale Research Letters 4, 12 (2009): 1421–1427.
    [23] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X.-Y. Bao, Y.-H. Lo, and D. Wang, "ZnO Nanowire UV Photodetectors with High Internal Gain." Nano Letters 7, 4 (2007): 1003–1009.
    [24] P. I. Reyes, C.-J. Ku, Z. Duan, Y. Xu, E. Garfunkel, and Y. Lu, "Reduction of Persistent Photoconductivity in ZnO Thin Film Transistor–Based UV Photodetector." Applied Physics Letters 101, 3 (2012): 031118.
    [25] M. Liu, H. Wang, Q. Tang, X. Zhao, Y. Tong, and Y. Liu, "Ultrathin Air-Stable n-Type Organic Phototransistor Array for Conformal Optoelectronics." Scientific Reports 8, (2018): 16612.
    [26] C. Nicholson, "Diffusion and Related Transport Mechanisms in Brain
    Tissue." Reports on Progress in Physics 64, 7 (2001): 815-884.
    [27] R. S. Zucker, W. G. Regehr, "Short-Term Synaptic Plasticity." AnnuRev Physiol, (2002): 64:355-405.
    [28] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, "Photonics for Artificial Intelligence and Neuromorphic Computing." Nature Photonics 15 (2021): 102–114.
    [29] W. L. Bragg, “The Diffraction of Short Electromagnetic Waves by a Crystal”, Proceedings of the Cambridge Philosophical Society,17, 43–57, 1913
    [30] A.L.Patterson, “The Scherrer Formula for X-Ray Particle Size Determination”, Physical Review Journals, 56(15), 978, 1939
    [31] S. J. Seo, Y. H. Hwang, and B. S. Bae, "Postannealing Process for Low Temperature Processed Sol–Gel Zinc Tin Oxide Thin Film Transistors." Electrochemical and Solid-State Letters 13, 10 (2010): H357–H359.
    [32] N. E. Sung, H.-K. Lee, K. H. Chae, J. P. Singh, and I.-J. Lee, "Correlation of Oxygen Vacancies to Various Properties of Amorphous Zinc Tin Oxide Films." Journal of Applied Physics 122 (2017): 085304.
    [33] H. G. Jeon, J. Hattori, S. Kato, N. Oguma, N. Hirata, Y. Taniguchi, and M. Ichikawa, "Thermal Treatment Effects on N-Alkyl Perylene Diimide Thin-Film Transistors with Different Alkyl Chain." Journal of Applied Physics 108, 12 (2010): 124512.
    [34] X. Chang, S. Li, and D. Chu, "Sensing of Oxygen Partial Pressure in Air with ZnO Nanoparticles." Sensors 20, 2 (2020): 562.
    [35] J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, and Z. Ren, "Photoinduced Oxygen Release and Persistent Photoconductivity in ZnO Nanowires." Nanoscale Research Letters 6 (2011): 404.
    [36] T. R. Lin, L.-C. Shih, P. J. Cheng, K. T. Chen, and J. S. Chen, "Violet-Light Stimulated Synaptic and Learning Functions in a Zinc–Tin Oxide Photoelectric Transistor for Neuromorphic Computation." RSC Advances 10 (2020): 42682.
    [37] H. Watanabe, M. Wada, and T. Takahashi, "The Activation Energy for Oxygen Desorption from Zinc Oxide Surfaces." Japanese Journal of Applied Physics 4, 12 (1965): 945–947.
    [38] S. Dhara, K. M. Niang, A. J. Flewitt, A. Nathan, and S. A. Lynch, "Tail state mediated conduction in zinc tin oxide thinfilm phototransistors under below bandgap optical excitation." Scientific Reports 11 (2021): 19016.
    [39] B. Mukherjee, "Large Photoresponse from a Small Molecule: Application in Photodetector and Pseudo-Transistor." Optik 126, 11–12 (2015): 1258–1262.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE