簡易檢索 / 詳目顯示

研究生: 柯建佑
Ko, Chien-Yu
論文名稱: 探討微小球蛋白(MSP58)與SWI/SNF複合體之間交互作用
Identification of novel protein-protein interactions between MSP58 and SWI/SNF subunits
指導教授: 林鼎晏
Lin, Ding-Yen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: MSP58SWI/SNF 複合體BRD7
外文關鍵詞: MSP58, SWI/SNF complex, BRD7
相關次數: 點閱:84下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微小核仁蛋白(MSP58/MCRS1)核蛋白,參與在許多細胞功能中並扮演重要角色例如:轉錄的調控、細胞增生、細胞轉型與細胞衰老等。在我們實驗室過去曾利用酵母菌雙雜合分析,將MSP58當成誘餌發現了許多重要的蛋白質與MSP58有著交互作用.。並且在實驗室過去的研究成果發現到,MSP58能與SWI/SNF染色質重組複合體的成員 BRG1交互作用並共同調控p53/p21所主導的細胞衰老。除了BRG1,我們更近一步的發現另一個有可能與MSP58交互作用的重要蛋白質BRD7,BRD7是一個蛋白質序列中含有bromodomain區域的核蛋白,並隸屬於SWI/SNF-PBAF染色質重組複合體中。過去對於BRD7的研究指出,其扮演著腫瘤抑制者的角色並能結合上染色體中乙醯化的組織蛋白同時調控基因的轉錄,而BRD7能透過調控許多細胞存活機制抑制細胞的增生例如:ras/MEK/ERK、Rb/E2F與Wnt訊息傳遞路徑等,並且BRD7在許多的癌症中呈現低表現的情況如:鼻咽癌、前列腺癌、乳癌、卵巢癌等。有趣的是,BRD7也曾被報導能調控p53的基因轉錄活性並且與p53交互作用,調控p53所主導的致癌基因誘導的細胞衰老(OIS)。在我的實驗中以利用生化的方式確認了MSP58與BRD7的交互作用,而在未來我們將繼續探討MSP58與BRD7所組成的複合體參與在細胞增生之訊息傳導路徑中的角色與其分子機制,本次的實驗結果將提供MSP58與BRD7複合體參與在腫瘤增生的資訊。

    58-kDa microspherule protein (MSP58) is a nucleolar protein and plays an important role in a variety of cellular function including transcriptional regulation, cell proliferation , transformation and senescence. We conducted yeast two-hybrid screening using MSP58 as bait and identified several interacting partners. In a previous study, we demonstrated that MSP58 associates with BRG1 and induces cellular senescence through the p53/p21 pathway. In addition to BRG1, BRD7 (Bromodomain Containing 7), is another candidate protein. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific SWI/SNF chromatin remodeling complexes. It has been shown that BRD7 acts as a tumor suppressor by binding the acetylated histones in chromosomes. The expression of BRD7 was down-regulated in nasopharyngeal carcinoma, prostate cancer, breast cancer, and ovarian carcinoma and it could inhibit cell growth through multiple mechanisms. For example, BRD7 suppressed the ras/MEK/ERK, Rb/E2F and Wnt signaling pathways. Interestingly, BRD7 have been reported to interact with p53 and is required for the efficient induction of p53-dependent oncogene-induced senescence. We have confirmed the interaction between MSP58 and BRD7 biochemically. We will further explore the roles and molecular mechanisms of MSP58/BRD7 complex in cell proliferation signaling pathway. Results of this study may provide information for the roles of MSP58 and BRD7 in tumorigenesis.

    中文摘要 I 英文摘要 II 致謝 V 目錄 VI 縮寫指引 X 第一章 序論 1 第一節 Wnt訊息傳遞路徑之介紹 1 第二節 58-kDa Microspherule Protein (MSP58)之介紹 2 第三節 Bromodomain containing 7 (BRD7)之介紹 3 第四節 Dishevelled (Dvl/Dsh) protein之介紹 4 第五節 實驗動機 5 第二章 實驗材料與方法 7 第一節 質體之建構 7 第二節 細胞培養(Cell Culture) 11 第三節 建立持續穩定表現基因之細胞株 13 第四節 收取全細胞液 (Total Cell Lysate)與蛋白質定量 15 第五節 西方墨點法 (Wwstern Blot) 16 第六節 報告基因分析 (Reporter Gene Assay) 20 第七節 核質分離 (nuclear and cytoplasmic protein extraction) 21 第八節 共同免疫沉澱法 (Co-immunoprecipitation Assay) 23 第九節 酵母菌雙雜合分析法 (Yeast Two-Hybrid Assay) 24 第十節 免疫螢光染色 (Immunofluorescence) 28 第十一節 GST-融合蛋白沉澱分析 (GST pull-down assay) 與 細胞外轉錄轉譯 (Cell-free transcription and translation) 30 第十二節 Wnt3a條件培養基之收取(Wnt3a-conditioned medium preparation) 31 第三章 實驗結果 33 第一節 確認MSP58與BRD7之交互作用 33 第二節 確認MSP58與Dvl2之交互作用 34 第三節 β-catenin與MSP58並沒有直接的交互作用 35 第四節 探討MSP58與BRD7對於Wnt訊息傳遞路徑的影響 35 第五節 MSP58抑制由Wnt3a配體所誘發的Wnt訊息傳遞路徑 37 第六節 探討MSP58透過影響Dvl2調控TCF/LEF所主導的轉錄活性 38 第七節 MSP58抑制Wnt訊息傳遞路徑目標基因cyclin D1的蛋白質表現量 39 第八節 MSP58能夠促進β-catenin蛋白質水解 39 第九節 MSP58促進Dvl2走向蛋白酶體依賴性水解 40 第十節 總結 41 第四章 討論 42 第五章 參考文獻 45 附圖 53 附錄 72 附圖 Fig.1 MSP58 interacts with BRD7 in vitro and in vivo. 55 Fig. 2 MSP58 interacts with Dvl2 in vitro and in vivo. 57 Fig.3 β-catenin does not interact with MSP58 in yeast two-hybrid assay. 58 Fig.4 Both MSP58 and BRD7 inhibit Wnt/β-catenin reporter activity. 61 Fig.5 MSP58 attenuates Wnt3a-stimulated Wnt signaling. 63 Fig.6 MSP58 attenuates Wnt/β‐catenin‐mediated transcription in both HEK293T and SW480 cells. 64 Fig.7 MSP58 attenuates Dvl2-stimulated TCF/LEF-sensitive transcriptional activation. 66 Fig.8 MSP58 reduces Dvl2 protein level. 67 Fig.9 MSP58 decreases the expression of Wnt target genes cyclin D1 68 Fig.10 MSP58 promotes β-catenin degradation 69 Fig.11 MSP58 promotes Dvl2 polyubiquitination and degradation. 71 附錄 附錄一、Identification of BRD7 as an interacting protein with MSP58 72 附錄二、MSP58 interacts with β-catenin in vivo. 73 附錄三、MSP58 promotes Dvl2 degradation in SW480 cells 74

    1.Nusslein-Volhard C and Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795-801.
    2.Nusse R and Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99-109.
    3.Ramakrishna NR and Brown AM (1993) Wingless, the Drosophila homolog of the proto-oncogene Wnt-1, can transform mouse mammary epithelial cells. Dev Suppl:95-103.
    4.Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D and Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649-57.
    5.Edeling M, Ragi G, Huang S, Pavenstadt H and Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426-39. doi: 10.1038/nrneph.2016.54
    6.Gurskaya OY, Dobryakova YV and Markevich VA (2015) [A Role of the Wnt Signaling in the Regulation of Brain Function]. Zh Vyssh Nerv Deiat Im I P Pavlova 65:387-99.
    7.Kobayashi Y, Uehara S, Udagawa N and Takahashi N (2016) Regulation of bone metabolism by Wnt signals. J Biochem 159:387-92. doi: 10.1093/jb/mvv124
    8.Kurosaka H, Trainor PA, Leroux-Berger M and Iulianella A (2015) Cranial nerve development requires co-ordinated Shh and canonical Wnt signaling. PLoS One 10:e0120821. doi: 10.1371/journal.pone.0120821
    9.Nelson PJ, von Toerne C and Grone HJ (2011) Wnt-signaling pathways in progressive renal fibrosis. Expert Opin Ther Targets 15:1073-83. doi: 10.1517/14728222.2011.588210
    10.Zhou BP and Hung MC (2005) Wnt, hedgehog and snail: sister pathways that control by GSK-3beta and beta-Trcp in the regulation of metastasis. Cell Cycle 4:772-6. doi: 10.4161/cc.4.6.1744
    11.Tang M, Torres-Lanzas J, Lopez-Rios F, Esteller M and Sanchez-Cespedes M (2006) Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer 119:2603-6. doi: 10.1002/ijc.22211
    12.Liebner S and Plate KH (2010) Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res 2:1. doi: 10.1186/2040-2384-2-1
    13.Zhou L, Deng L, Chang NB, Dou L and Yang CX (2014) Cell apoptosis and proliferation in rat brains after intracerebral hemorrhage: role of Wnt/beta-catenin signaling pathway. Turk J Med Sci 44:920-7.
    14.Inestrosa NC and Varela-Nallar L (2015) Wnt signalling in neuronal differentiation and development. Cell Tissue Res 359:215-23. doi: 10.1007/s00441-014-1996-4
    15.Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE and Millar SE (2013) Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13:720-33. doi: 10.1016/j.stem.2013.10.003
    16.Lim X, Tan SH, Koh WL, Chau RM, Yan KS, Kuo CJ, van Amerongen R, Klein AM and Nusse R (2013) Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342:1226-30. doi: 10.1126/science.1239730
    17.Morgan BA (2013) The "skinny" on Wnt signaling in stem cells. Cell Stem Cell 13:638-40. doi: 10.1016/j.stem.2013.11.012
    18.Cordeiro BM, Oliveira ID, Alves MT, Saba-Silva N, Capellano AM, Cavalheiro S, Dastoli P and Toledo SR (2014) SHH, WNT, and NOTCH pathways in medulloblastoma: when cancer stem cells maintain self-renewal and differentiation properties. Childs Nerv Syst 30:1165-72. doi: 10.1007/s00381-014-2403-x
    19.Kim YM and Kahn M (2014) The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. Res Rep Biochem 4:1-12. doi: 10.2147/RRBC.S53823
    20.Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, Dunn KK, Shusta EV and Palecek SP (2014) Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports 3:804-16. doi: 10.1016/j.stemcr.2014.09.005
    21.Lien WH and Fuchs E (2014) Wnt some lose some: transcriptional governance of stem cells by Wnt/beta-catenin signaling. Genes Dev 28:1517-32. doi: 10.1101/gad.244772.114
    22.Sokol SY (1999) Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet Dev 9:405-10. doi: 10.1016/S0959-437X(99)80061-6
    23.Sumoy L, Kiefer J and Kimelman D (1999) Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish. Dev Genes Evol 209:48-58.
    24.Geng X, Xiao L, Lin GF, Hu R, Wang JH, Rupp RA and Ding X (2003) Lef/Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification. FEBS Lett 547:1-6.
    25.Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M and Slusarski DC (2003) Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162:889-98. doi: 10.1083/jcb.200303107
    26.De Ferrari GV and Inestrosa NC (2000) Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 33:1-12.
    27.Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15:28-32. doi: 10.1038/sj.cr.7290260
    28.L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Serapide MF, Pluchino S and Marchetti B (2014) Wnt/beta-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson's disease. Stem Cells 32:2147-63. doi: 10.1002/stem.1708
    29.Zou Y and Salinas P (2014) Introduction: Wnt signaling mechanisms in development and disease. Dev Neurobiol 74:757-8. doi: 10.1002/dneu.22192
    30.Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW, Schmid-Schonbein GW, Chien S, Chu PH and Lin SJ (2015) Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J Am Soc Nephrol 26:3072-84. doi: 10.1681/ASN.2014100989
    31.Song JL, Nigam P, Tektas SS and Selva E (2015) microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 27:1380-91. doi: 10.1016/j.cellsig.2015.03.018
    32.Clevers H and Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192-205. doi: 10.1016/j.cell.2012.05.012
    33.Schepers A and Clevers H (2012) Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 4:a007989. doi: 10.1101/cshperspect.a007989
    34.Basu S, Haase G and Ben-Ze'ev A (2016) Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res 5. doi: 10.12688/f1000research.7579.1
    35.Xu Q, Krause M, Samoylenko A and Vainio S (2016) Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 8. doi: 10.3390/cancers8060057
    36.Gordon MD and Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429-33. doi: 10.1074/jbc.R600015200
    37.Stamos JL and Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5:a007898. doi: 10.1101/cshperspect.a007898
    38.MacDonald BT, Tamai K and He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9-26. doi: 10.1016/j.devcel.2009.06.016
    39.Gomez-Orte E, Saenz-Narciso B, Moreno S and Cabello J (2013) Multiple functions of the noncanonical Wnt pathway. Trends Genet 29:545-53. doi: 10.1016/j.tig.2013.06.003
    40.Rao TP and Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798-806. doi: 10.1161/CIRCRESAHA.110.219840
    41.Ren Y, Busch RK, Perlaky L and Busch H (1998) The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur J Biochem 253:734-42.
    42.Davidovic L, Bechara E, Gravel M, Jaglin XH, Tremblay S, Sik A, Bardoni B and Khandjian EW (2006) The nuclear microspherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Hum Mol Genet 15:1525-38. doi: 10.1093/hmg/ddl074
    43.Bader AG, Schneider ML, Bister K and Hartl M (2001) TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 20:7524-35. doi: 10.1038/sj.onc.1204938
    44.Okumura K, Zhao M, Depinho RA, Furnari FB and Cavenee WK (2005) Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci U S A 102:2703-6. doi: 10.1073/pnas.0409370102
    45.Shi H, Chen S, Jin H, Xu C, Dong G, Zhao Q, Wang W, Zhang H, Lin W, Zhang J, Davidovic L, Yao L and Fan D (2009) Downregulation of MSP58 inhibits growth of human colorectal cancer cells via regulation of the cyclin D1-cyclin-dependent kinase 4-p21 pathway. Cancer Sci 100:1585-90. doi: 10.1111/j.1349-7006.2009.01223.x
    46.Shi H, Li SJ, Zhang B, Liu HL and Chen CS (2012) Expression of MSP58 in human colorectal cancer and its correlation with prognosis. Med Oncol 29:3136-42. doi: 10.1007/s12032-012-0284-y
    47.Zhong M, Zhang X, Li B, Chen CS, Ji GL, Li SX, Bi DQ, Zhao QC and Shi H (2013) Expression of MSP58 in hepatocellular carcinoma. Med Oncol 30:539. doi: 10.1007/s12032-013-0539-2
    48.Liu M, Zhou K, Huang Y and Cao Y (2015) The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. J Exp Clin Cancer Res 34:121. doi: 10.1186/s13046-015-0235-5
    49.Peng J, Ma J, Li W, Mo R, Zhang P, Gao K, Jin X, Xiao J, Wang C and Fan J (2015) Stabilization of MCRS1 by BAP1 prevents chromosome instability in renal cell carcinoma. Cancer Lett 369:167-74. doi: 10.1016/j.canlet.2015.08.013
    50.Lin W, Dai SH, Chen T, Kawai N, Miyake K, Okada M, Haba R, Yamamoto Y, Tamiya T and Fei Z (2016) Expression of 58-kD Microspherule Protein (MSP58) is Highly Correlated with PET Imaging of Tumor Malignancy and Cell Proliferation in Glioma Patients. Cell Physiol Biochem 38:635-45. doi: 10.1159/000438656
    51.Song H, Li Y, Chen G, Xing Z, Zhao J, Yokoyama KK, Li T and Zhao M (2004) Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochem Biophys Res Commun 316:1116-23. doi: 10.1016/j.bbrc.2004.02.166
    52.Andersen DS, Raja SJ, Colombani J, Shaw RL, Langton PF, Akhtar A and Tapon N (2010) Drosophila MCRS2 associates with RNA polymerase II complexes to regulate transcription. Mol Cell Biol 30:4744-55. doi: 10.1128/MCB.01586-09
    53.Hsu CC, Chen CH, Hsu TI, Hung JJ, Ko JL, Zhang B, Lee YC, Chen HK, Chang WC and Lin DY (2014) The 58-kda microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). Biochim Biophys Acta 1843:565-79. doi: 10.1016/j.bbamcr.2013.12.004
    54.Hsu CC, Lee YC, Yeh SH, Chen CH, Wu CC, Wang TY, Chen YN, Hung LY, Liu YW, Chen HK, Hsiao YT, Wang WS, Tsou JH, Tsou YH, Wu MH, Chang WC and Lin DY (2012) 58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. J Biol Chem 287:22533-48. doi: 10.1074/jbc.M111.335331
    55.Lin DY and Shih HM (2002) Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration. J Biol Chem 277:25446-56. doi: 10.1074/jbc.M200633200
    56.Kaeser MD, Aslanian A, Dong MQ, Yates JR, 3rd and Emerson BM (2008) BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283:32254-63. doi: 10.1074/jbc.M806061200
    57.Staal A, Enserink JM, Stein JL, Stein GS and van Wijnen AJ (2000) Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol 185:269-79. doi: 10.1002/1097-4652(200011)185:2<269::AID-JCP12>3.0.CO;2-L
    58.Yu X, Li Z and Shen J (2016) BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res 8:742-8.
    59.Liu H, Peng C, Zhou M, Zhou J, Shen S, Zhou H, Xiong W, Luo X, Peng S, Niu Z, Ouyang J, Li X and Li G (2006) Cloning and characterization of the BRD7 gene promoter. DNA Cell Biol 25:346-58. doi: 10.1089/dna.2006.25.346
    60.Liu H, Zhou M, Luo X, Zhang L, Niu Z, Peng C, Ma J, Peng S, Zhou H, Xiang B, Li X, Li S, He J, Li X and Li G (2008) Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC Mol Biol 9:111. doi: 10.1186/1471-2199-9-111
    61.Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG, Xiong W, Liu HY, Huang H, Zhou M and Li GY (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 200:89-98. doi: 10.1002/jcp.20013
    62.Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR and Li GY (2007) BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 303:141-9. doi: 10.1007/s11010-007-9466-x
    63.Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH, Choi JJ, Jeon HK, Cho YJ, Ryu JY, Kim BG and Bae DS (2014) Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 20:565-75. doi: 10.1158/1078-0432.CCR-13-1271
    64.Zhou M, Xu XJ, Zhou HD, Liu HY, He JJ, Li XL, Peng C, Xiong W, Fan SQ, Lu JH, Ouyang J, Shen SR, Xiang B and Li GY (2006) BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Mol Cell Biochem 292:205-12. doi: 10.1007/s11010-006-9233-4
    65.Peng C, Zhou J, Liu HY, Zhou M, Wang LL, Zhang QH, Yang YX, Xiong W, Shen SR, Li XL and Li GY (2006) The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem 97:882-92. doi: 10.1002/jcb.20645
    66.Burrows AE, Smogorzewska A and Elledge SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci U S A 107:14280-5. doi: 10.1073/pnas.1009559107
    67.Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R and Del Sal G (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12:380-9. doi: 10.1038/ncb2038
    68.Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB and Harkin DP (2010) BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 70:2538-47. doi: 10.1158/0008-5472.CAN-09-2089
    69.Sussman DJ, Klingensmith J, Salinas P, Adams PS, Nusse R and Perrimon N (1994) Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene dishevelled. Dev Biol 166:73-86. doi: 10.1006/dbio.1994.1297
    70.Yang Y, Lijam N, Sussman DJ and Tsang M (1996) Genomic organization of mouse Dishevelled genes. Gene 180:121-3.
    71.Gao C and Chen YG (2010) Dishevelled: The hub of Wnt signaling. Cell Signal 22:717-27. doi: 10.1016/j.cellsig.2009.11.021
    72.Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC and He X (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135:367-75. doi: 10.1242/dev.013540
    73.Itoh K, Brott BK, Bae GU, Ratcliffe MJ and Sokol SY (2005) Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol 4:3. doi: 10.1186/jbiol20
    74.Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP and Li L (2008) Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 180:1087-100. doi: 10.1083/jcb.200710050
    75.Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173-8. doi: 10.1038/nature04209
    76.Kim S, Lee J, Park J and Chung J (2003) BP75, bromodomain-containing M(r) 75,000 protein, binds dishevelled-1 and enhances Wnt signaling by inactivating glycogen synthase kinase-3 beta. Cancer Res 63:4792-5.
    77.Ilyas M, Tomlinson IP, Rowan A, Pignatelli M and Bodmer WF (1997) Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94:10330-4.
    78.Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, Lin K, Aldape K, Majumder S, Lu Z and Huang S (2015) Tumour suppressor TRIM33 targets nuclear beta-catenin degradation. Nat Commun 6:6156. doi: 10.1038/ncomms7156
    79.Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X and Chen YG (2010) Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12:781-90. doi: 10.1038/ncb2082
    80.Adams PD and Enders GH (2008) Wnt-signaling and senescence: A tug of war in early neoplasia? Cancer Biol Ther 7:1706-11.
    81.Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R and Adams PD (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183-96. doi: 10.1016/j.molcel.2007.05.034
    82.Jeoung JY, Nam HY, Kwak J, Jin HJ, Lee HJ, Lee BW, Baek JH, Eom JS, Chang EJ, Shin DM, Choi SJ and Kim SW (2015) A decline in Wnt3a signaling is necessary for mesenchymal stem cells to proceed to replicative senescence. Stem Cells Dev 24:973-82. doi: 10.1089/scd.2014.0273
    83.Lienkamp S, Ganner A and Walz G (2012) Inversin, Wnt signaling and primary cilia. Differentiation 83:S49-55. doi: 10.1016/j.diff.2011.11.012
    84.Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T and Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537-43. doi: 10.1038/ng1552
    85.Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P and Strachan T (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149-56. doi: 10.1038/2450
    86.Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH and Kim J (2016) MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 6:27284. doi: 10.1038/srep27284
    87.Wei W, Li M, Wang J, Nie F and Li L (2012) The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 32:3903-12. doi: 10.1128/MCB.00251-12
    88.Metcalfe C, Ibrahim AE, Graeb M, de la Roche M, Schwarz-Romond T, Fiedler M, Winton DJ, Corfield A and Bienz M (2010) Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res 70:6629-38. doi: 10.1158/0008-5472.CAN-10-1616

    無法下載圖示 校內:2021-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE