| 研究生: |
黃騰逸 Huang, Teng-Yi |
|---|---|
| 論文名稱: |
摩擦攪拌製程及後續T4 -T6熱處理對6082鋁合金微觀組織及拉伸性質之影響 Effects of Friction Stir Process and Post T4 -T6 Treatment on Microstructure and Tensile Properties of 6082 Aluminum Alloy |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 摩擦攪拌 、拉伸性質 、晶粒粗大化 、6082鋁合金 |
| 外文關鍵詞: | Friction Stir Process, Tensile Properties, Grain Coarsening, AA6082 |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Al-Mg-Si鋁合金為析出強化型鋁合金,具有耐腐蝕性以及良好的銲接性且價格低廉,主用應用於建築以及汽車上。6082鋁合金在熱處理後之Al-Mg-Si鋁合金中具有最好的強度,但6082鋁合金經過高溫塑性變形以及攪拌材經高溫熱處理後會有晶粒粗大化之現象,其原因尚未有明確結論以及此現象對機械性質之影響需要釐清。本研究選用6082擠型材作為研究用母材,對其施以摩擦攪拌製程導入不同轉速(450、1050、1650 rpm)之高溫塑性變形與後續T4-T6 (560℃ 0.5~ 2hr, 170℃ 6hr)熱處理,觀察其微觀組織變化以及對常溫拉伸性質的影響。
研究結果顯示,隨著T4熱處理時間的增加,攪拌區內的晶粒粗大化情形也會隨之增加,晶粒粗大化之情形會先從攪拌區之頂部與底部開始出現,且晶粒成長速度較快,而高轉速攪拌材之組織高溫穩定性優於低轉速攪拌材,晶粒較不易粗大化,但晶粒容易粗大化之低轉速攪拌材則是外觀用件較恰當的表面改質參數。
常溫拉伸性質的部分,摩擦攪拌材未經後熱處理之攪拌區細小且均勻的組織使拉伸過程中裂紋較不易串連,因而攪拌後有較佳的拉伸延性。6082鋁合金經摩擦攪拌及後T4-T6熱處理,不同轉速之攪拌材在相同時間後熱處理下,攪拌區之組織粗大化情形會有所不同,而組織差異對拉伸強度則是沒有太大的影響,在拉伸變形時強度主要還是受析出強化主導而與晶粒粗大化較無關,拉伸延性則是會受到粗大化組織及組織均勻性的影響。但整體拉伸性質與未經摩擦攪拌製程前的6082鋁合金T4-T6材相比皆有劣化之現象。
6xxx Al alloy, a series of precipitation hardened Al alloys, is widely used in extruded aluminum products. The material used in this study is AA6082 which is optimized to be the strongest alloy in 6xxx series. Nowadays, AA6082 is majorly applied in automotive industry and construction. Friction stir process (FSP) is practicable for AA6082 and improve the ductility of AA6082, but the strength of friction stir processed (FSPed) AA6082 will be descended. In this study, post T4-T6 treatment was expected to promote the strength of FSPed AA6082, but the grains of FSPed AA6082 coarsened in the stir zone after solution treatment. To investigate the effects of FSP and post T4-T6 treatment on microstructural characteristic and tensile properties of material in the stir zone (SZ). The results showed that different rotation speed of FSP got different coarsening situation after T4-T6 treatment and low rotation speed of FSP which was easy to obtain coarse grains. And one thing should be noticed that tensile stresses of specimens with different rotation speed were almost identical. The result showed that grain size did not affect the strength in AA6082 after T4-T6 treatment. Precipitation hardening plays the major role in determining the strength of AA6082. And coarse grain would make material ductility decrease. However, tensile properties of post T4-T6 treatment FSPed AA6082 are still lower than T4-T6 treatment AA6082.
1. C.D. Marioara, S.J. Andersen, J. Jansen and H.W. Zandbergen, The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy, Acta Materialia, 51(3): pp. 789-796, 2003.
2. V. OČENÁŠEK and P. SEDLÁČEK, The effect of surface recrystallized layers on properties of extrusions and forgings from high strength aluminium alloys, Metal, 2011.
3. E. Cerri and P. Leo, Influence of high temperature thermal treatment on grain stability and mechanical properties of medium strength aluminium alloy friction stir welds, Journal of Materials Processing Technology, 213(1): pp. 75-83, 2013.
4. E.A. El-Danaf and M.M. El-Rayes, Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions, Materials & Design, 46: pp. 561-572, 2013.
5. M.M. El-Rayes and E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082, Journal of Materials Processing Technology, 212(5): pp. 1157-1168, 2012.
6. J.E. 'Hatcg, ALUMINUM (Properties and Physical Metallurgy), American Society for Metals, 1984.
7. M. Tercelj, M. Fazarinc, G. Kugler and I. Perus, Influence of the chemical composition and process parameters on the mechanical properties of an extruded aluminium alloy for highly loaded structural parts, Construction and Building Materials, 44: pp. 781-791, 2013.
8. Y. Birol, The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles, Journal of Materials Processing Technology, 173(1): pp. 84-91, 2006.
9. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50(1-2): pp. 1-78, 2005.
10. W.M. Thomas and E.D. Nicholas, Friction stir welding for the transportation industries, Materials & Design, 18: pp. 269-273, 1997.
11. W. Deqing, L. Shuhua and C. Zhaoxia, Study of friction stir welding of aluminum, Journal Of Materials Science, 39: pp. 1689-1693, 2004.
12. Z.Y. Ma, R.S. Mishra, M.W. Mahoney and R. Grimes, High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy, Materials Science and Engineering: A, 351(1-2): pp. 148-153, 2003.
13. N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi and M. Nakamura, Grain refinement of 1050 aluminum alloy by friction stir processing, Journal Of Materials Science Letters, 20: pp. 1913-1915, 2001.
14. S. Jana, R.S. Mishra, J.A. Baumann and G. Grant, Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy, Materials Science and Engineering: A, 528(1): pp. 189-199, 2010.
15. I. Charit and R.S. Mishra, Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy, Acta Materialia, 53(15): pp. 4211-4223, 2005.
16. I. Charit and R.S. Mishra, Abnormal grain growth in friction stir processed alloys, Scripta Materialia, 58(5): pp. 367-371, 2008.
17. K. Chen, W. Gan, K. Okamoto, K. Chung and R.H. Wagoner, The Mechanism of Grain Coarsening in Friction-Stir-Welded AA5083 after Heat Treatment, Metallurgical and Materials Transactions A, 42(2): pp. 488-507, 2010.
18. S. Mironov, K. Masaki, Y.S. Sato and H. Kokawa, Texture Produced by Abnormal Grain Growth in Friction Stir-Welded Aluminum Alloy 1050, Metallurgical and Materials Transactions A, 44(3): pp. 1153-1157, 2013.
19. L.A.R. Abbaschain and R.E. Reed-Hill, Physical Metallurgy Principles (Fourth Edition, SI), CENGAGE Learning, 2010.
20. J. Adamowski, C. Gambaro, E. Lertora, M. Ponte and M. Szkodo, Analysis of FSW welds made of aluminium alloy AW6082-T6, Archives of Materials Science and Engineering: pp. 453-460, 2007.
21. M. Jayaraman and V. Balasubramanian, Effect of process parameters on tensile strength of friction stir welded cast A356 aluminium alloy joints, Transactions of Nonferrous Metals Society of China, 23(3): pp. 605-615, 2013.
22. S. Ugender, A. Kumar and A.S. Reddy, Influence of Welding Processes on Tensile Properties, Microstructure, and Hardness of Friction Stir Welded AZ31B Magnesium Alloy, Bonfring International Journal of Industrial Engineering and Management Science, 4(2): pp. 96-100, 2014.
23. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, New York/USA, Elsevier Science, 1997.
24. 李昇樺,「高溫加熱處理(400~600℃)對1050純鋁摩擦攪拌部組織特徵與拉伸性質之影響」,國立成功大學材料科學與工程學系, 碩士論文, 第18頁, 民國102年。
25. 林春億,「摩擦攪拌製程及後續加熱對Al-5Mg-0.6Mn合金微觀組織與常溫拉伸性質之影響」,國立成功大學材料科學與工程學系, 博士論文, 第74頁, 民國103年。
26. I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain and C. Garcia, Tensile Behaviour of 6082 Aluminium Alloy Sheet under Different Conditions of Heat Treatment, Temperature and Strain Rate, Key Engineering Materials, 423: pp. 105-112, 2009.
校內:2020-08-06公開