簡易檢索 / 詳目顯示

研究生: 謝欣媛
Hsieh, Hsin-Yuan
論文名稱: 溶液燃燒合成法製備可見光光觸媒TiO2之製程開發
Process Development for Liquid Combustion Synthesis of visible-photocatalytic titanium dioxide
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 144
中文關鍵詞: 可見光光觸媒燃燒合成法
外文關鍵詞: visible-light, photocatalyst, combustion synthesis method
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光觸媒可稱謂新世紀的環保尖兵,無論是在有機污染物的分解、抗菌、除臭及自我清潔等領域皆有極佳的表現。由於TiO2 具無毒、化學性質穩定及較佳的能隙結構,故為應用最為廣泛的光觸媒;TiO2 的應用光源主要為紫外光,這是因為TiO2 的能隙約為3.2eV,予一小於388nm 的紫外光波長即可激發光觸媒產生光催化作用。不過,由於太陽光中紫外光僅佔5% 的能量,而可見光 (波長400~700nm) 約佔45%的能量,因此,為了有效利用現有的太陽光能量,並期望在室內等紫外光較微弱的地方也能夠使用光觸媒,可見光光觸媒的開發逐漸成為光觸媒的研究主流;本研究利用溶液燃燒合成的方式(SCS method)將TiO2 改質,藉由燃燒反應產生的C 取代TiO2 中的O 原子,得到能隙較小的TiO2 ,以提升TiO2 在可見光下的應用性,並經由XRD、TGA、FT-IR、C/S Analyzer、UV-vis spectrum 等儀器分析,驗證粉體特性。

      研究內容主要探討兩種還原劑glycine、urea 在使用上的特性以及選擇;並且改變燃燒熱、計量比等參數分析粉體特性。結果發現使用glycine做為還原劑,x≧2.5 會有Rutile 結晶相出現;使用urea 做為還原劑,x≧2即有Rutile 結晶相出現。因此,可以得知經由引燃進行氧化還原作用所放出的熱量大小將決定粉體的結晶強弱以及型態。

      經由掃描式電子顯微鏡觀察,得知本研究合成粉體的表面形貌皆為多孔洞結構,這是因為SCS 製程在引燃進行氧化還原作用時所產生的大量氣體衝擊粉體所致。因此,得知氣體含量的多寡將控制粉體碳的含量、孔洞數量以及比表面積大小。

      實驗結果顯示使用urea 做為還原劑,Ti(OH)4、氧化劑與還原劑的比例為1:1.5:1,所得到的這組粉體u(1:1.5:1)在太陽光的MB分解實驗表現出極佳的光觸媒活性,30 分鐘內即可達到97%的分解效率,分解速率優於商業化ST-01 的70.2%。並且經由碳硫分析儀(C/S Analyzer)以及元素分析儀(EDS)的分析得知,利用溶液燃燒合成法製備的TiO2皆有碳元素的存在,含量介於(0.03%~1.49%)。粉體能隙(Eg)將隨著碳含量的增加而減小,因此,推論碳的摻雜可以改變TiO2 材料結構,提升粉體在λ>400nm 的吸收能力。

     Since photoinduced decomposition of water on TiO2 electrodes was discovered, semiconductor-based photocatalysis has attracted extensive
    interest. One particular focus has been on applications in which organic molecules are photodegraded, such as water and air purifications. Most of the investigations have focused on TiO2 , which shows relatively high reactivity and chemical stability under ultraviolet light( λ<388nm ), whose energy
    exceeds the band gap of 3.2eV in the anatase crystalline phase.

     The development of photocatalysts that can yield high reactivity under visible light( λ>388nm ), should allow the main part of the solar spectrum, and even poor illumination of interior lighting, to be used. One approach has been to dope transition metals into TiO2 . However,doped materials suffer from a thermal instability, an increase of carrier-recombination centers, or the
    requirement of an expensive ion-implantation facility. From Asahi’s report, using anionic species for the doping is better than cationic metals, which often give quite localized d stated deep in the band gap of TiO2 and result in
    recombination centers of carriers. Like C、S、N、P and F.

     In order to dope anionic species(Carbon)into powder to change structure,we use solution-combustion-synthesis method (SCS method). Combustion process gives short reacting time, and large amounts of gases to get modified
    TiO2 . was characterized by X-ray diffraction(XRD),thermgravimetric Analyzer(TGA), Diffuse Reflectance Infrared Spectroscopy(FT-IR), C/S Analyzer and UV-Vis Spectrum.

     From the thesis, we use glycine and urea as reducing agents to analyze synthesized powder’s characteristics. We can get the best data-u(1:1.5:1), which has great specific surface area(86.37 g m2 ), and quick degradation for
    methylene blue experiment. It can extend so high decomposed efficiency-97% during 30 min, better than commercial ST-01-70.2%. From C/S analyzer, there are carbon atoms (0.05%) into the u(1:1.5:1), and has great optical absorption at 400 to 440 nm. It can be proved that C doped into
    substitutional sites of TiO2 is indispensable for band-gap narrowing and photocatalytic activity.

    目錄 中文摘要……………………………………………………Ι 英文摘要…………………………………………………III 總目錄………………………………………………………V 圖目錄 ……………………………………………………XI 表目錄……………………………………………………XVI 符號 ……………………………………………………XVII 第一章 緒論 ………………………………………………1 第二章 理論基礎與文獻回顧 ……………………………4 2.1 二氧化鈦的介紹………………………………………4 2.2 二氧化鈦的應用………………………………………7 2.2.1 光觸媒作用原理……………………………………7 2.2.1.1 異相催化反應步驟………………………………7 2.2.1.2 材料的半導體性質………………………………8 2.2.1.3 吸收入射光的激發過程 ………………………11 2.2.1.4 表面電子轉移途徑 ……………………………12 2.2.1.5 量子產率 ………………………………………14 2.2.1.6 能帶位置 ………………………………………14 2.2.2 二氧化鈦光觸媒 …………………………………16 2.2.2.1 光催化反應機制 ………………………………16 2.2.2.2 光催化反應動力模式 …………………………17 2.2.3 提升光催化效率之方式 …………………………18 2.2.3.1 金屬掺合改質TiO2 ……………………………19 2.2.3.2 非金屬掺合改質TiO2 …………………………20 2.3 二氧化鈦的合成方式 ………………………………20 2.3.1 熱水解法 …………………………………………22 2.3.2 TiCl 4 在水溶液中的水解縮合行為 …………24 2.3.3 TiO2 表面改質 …………………………………29 2.3.3.1 改變溶液pH 值 ………………………………29 2.3.3.2 添加分散劑HPC ………………………………29 2.4 二氧化鈦的改質-可見光光觸媒 …………………31 2.5 溶液燃燒合成法(solution-combustion synthesis method)……35 2.6 微波加熱反應爐 ……………………………………37 2.6.1 微波加熱原理 ……………………………………38 2.7 光催化效率之測試方式 ……………………………41 2.8 研究動機與內容 ……………………………………44 2.8.1 研究目的 …………………………………………44 2.8.2 研究動機 …………………………………………44 2.8.3 研究內容 …………………………………………47 第三章 實驗內容及方法 ………………………………48 3.1 實驗藥品 ……………………………………………48 3.2 實驗設備及分析儀器 ………………………………49 3.3 實驗內容 ……………………………………………51 3.3.1 實驗流程圖 ………………………………………51 3.3.2 實驗分析流程圖 …………………………………52 3.3.3 製備方式 …………………………………………53 3.3.3.1 Ti(OH)4 之製備 ………………………………53 3.3.3.2 燃燒前驅物的準備以及合成粉體之製備 ……54 3.3.3.2.1 Ti(OH)4/NH4NO3/glycine …………………54 3.3.3.2.2 Ti(OH)4/NH4NO3/urea ……………………55 3.3.3.3 Ti(OH)4 高溫鍛燒 ……………………………57 3.3.4 TiO2 分解亞甲基藍實驗 ………………………57 3.3.4.1 TiO2 吸附實驗 ………………………………57 3.3.4.2 TiO2 太陽光下分解MB實驗……………………59 3.3.5 儀器原理與測試方式 ……………………………61 3.3.5.1 X 光繞射分析(XRD) …………………………61 3.3.5.2 擴散反射式紅外線光譜儀(DRIFT) …………62 3.3.5.3 熱性質的測試 …………………………………63 3.3.5.4 碳硫分析儀 ……………………………………63 3.3.5.5 氮氧吸附法測比表面積(BET)………………63 3.3.5.6 表面型態學(Morphology)的分析 …………64 3.3.5.7 紫外-可見光光譜儀(uv-vis spectrometer) 65 第四章 結果與討論 ……………………………………67 4.1 引燃熱源之溫度設定 ………………………………67 4.2 還原劑的選擇 ………………………………………68 4.3(Ti(OH)4/NH4NO3/glycine)燃料為glycine ……69 4.3.1 燃燒前驅混合物 pre(NH4NO3:glycine) ……69 4.3.2 固定熱源溫度(T=350℃)之g(1:x:1)……71 4.3.2.1 燃燒現象之觀察 ………………………………72 4.3.2.2 改變x 值之g(1:x:1) ……………………75 4.3.2.3 XRD 分析 ………………………………………76 4.3.2.4 粉體碳含量之分析 ……………………………77 4.3.2.5 粉體比表面積之分析 …………………………79 4.3.2.6 粉體吸附特性之分析 …………………………80 4.3.2.7 粉體光觸媒特性之分析 ………………………82 4.3.2.8 粉體吸收波長之分析 …………………………83 4.3.2.9 燃燒合成前/後TiO2 粉體的形貌分析 ………85 4.3.2.10 結論 …………………………………………87 4.3.3 g(1:2:1)改變熱源溫度T℃去除殘碳 ……89 4.3.4 g(1:2:1)與熱水解合成得到的TiO2 比較…93 4.3.5 g(1:4.5a:1a)改變a 值調整燃燒放熱量 …95 4.4(Ti(OH)4/NH4NO3/urea)燃料為urea ……………99 4.4.1 燃燒前驅混合物 pre(NH4NO3:urea) …………99 4.4.2 固定熱源溫度(T=500℃)之u(1:x:1)……100 4.4.2.1 燃燒現象之觀察………………………………100 4.4.2.2 XRD 分析………………………………………101 4.4.2.3 粉體碳含量之分析……………………………103 4.4.2.4 粉體吸附特性之分析…………………………104 4.4.2.5 粉體光觸媒特性之分析………………………104 4.4.2.6 SEM 之分析……………………………………107 4.4.2.7 結論……………………………………………108 4.4.3 改變(NH4NO3/urea)放熱量 …………………110 4.4.3.1 BET 分析………………………………………110 4.4.3.2 XRD 分析………………………………………112 4.4.3.3 粉體吸收波長/碳含量分析 …………………114 4.4.3.4 光觸媒分解測試………………………………118 4.5 EDS 元素分析………………………………………124 第五章 結論與建議 ……………………………………130 第六章 參考文獻 ………………………………………137

    參考文獻
    [1] Fujishima,A., Honda,K. “Electrochemical photolysis of water at
    semiconductor electrode.”, Nature 37 p238(1972)
    [2] Steven N. Frank, J. Bard “Heterogeneous Photocatalytic Oxidation of
    Cyanide Ion in Aqueous Solutions at TiO2 Powder.”, J. Am. Chem. Soc.
    99 p303 (1977)
    [3] A. Sclafani, J. H. Herrmann, “Comparison of the Photoelectronic and
    Photo-catalytic Activities of Various Anatase and Rutile Forms of Titania
    in Pure Liquid Organic Phases and in Aqueous Solutions.”, J. Phys. Chem.
    100 p13655 (1996)
    [4] A. Sclafani, L. Palmisano, M. Schiavello “Influence of the preparation
    methods of titanium dioxide on the photocatalytic degradation of phenol
    in aqueous dispersion”, J. Phys. Chem. 94 p829 (1990)
    [5] The American Ceramic Society Inc. “Phase Diagrams for Ceramics
    Figure.” p4150~4999 (1975)
    [6] Linsebigler A.L. “Photocatalysis on TiO2 surfaces:principles,
    mechanisms, and selected results.” Chem. Rev. 95 p735-758 (1995)
    [7] Atkins P. W. “Heterogeneous Catalysis.” J. Phys. Chem. 98 p997 (1994)
    [8] T. Imamura, “Kinetics of the Chemical and Electrochemical, Reversible
    Oxidation of Bis (dithiooxalato-S,S’) cuprate( II), [Cu(Dto)2] - 2 .
    Afacile,light-activated, intramolecular electron transfer and cleavage of
    the C-C Bond in the Coordinated Dto Ligands in the [Cu(Dto)2] - Anion”,
    J. Am.Chem. Soc. 106 p984 (1984)
    [9] Lewis N. S. Annual Review of Physical Chemistry 42 p543 (1991)
    [10]Matthews, R. W., “An Adsorption Water Purifier with in Situ
    Photocatalytic Regeneration”, J. Catal. 113 p549 (1988)
    [11]Fox M. A. “Heteogeneous photocatalysis.” Chem. Rev. 93 p341 (1993)
    [12]Herrmann J. M. “Heterogeneous Photocatalysis: fundamentals and
    applications to the removal of various types of aqueous pollutants.”
    Catal.Today 53 p115 (1999)
    [13]Davis A. P., Huand C. P., “The photocatalytic oxidation of
    sulfurcontaining organic compounds using cadmium sulfide and the effect on
    CdS photocorrosion” Wal. Res. 25 p1273 (1991)
    [14]Y. Matsumoto, J. Kurimoto, “Visible Light Response of Polycrystalline
    TiO2 Electrodes” J. Electrochem. Soc. 127 p2148 (1980)
    [15]A.K.Ghosh, H.P. Maruska, “The Role of Metal Ion Dopants in
    Quantum-Sized TiO2: Correlation between Photoreactivity and Charge
    Carrier Recombination Dynamics”, J. Phys. Chem. 98 p13669 (1994)
    [16]Hiromi Yamashita, Masaru Harada, “Degradation of propanol diluted
    in water under visible light irradiation using metal ion-implanted titanium
    dioxide photocatalysts”, Journal of Photochemistry and Photobiology A:
    Chemistry 148 p257 (2002)
    [17]A. Fuerte, M.D. Hernandex-Alonso, “Nanosize Ti–W Mixed Oxides:
    Effect of Doping Level in the Photocatalytic Degradation of Toluene
    Using Sunlight-Type Excitation”, J. Catal. 212 p1 (2002)
    [18]KRI, Japanse R&D Trend Analysis, Advanced Materials-Phase XIV,
    Report no.5: Technology & Market Trends of TiO2-Based and Next
    Generation Photocatalytic Products, nov. (2002)
    [19]R. Asahi, T. Morikawa, “Visible-light photocatalysis in nitrogen-doped
    titanium oxides”, Science, 293 p269 (2001)
    [20]P. Pichat, J. M. Herrmann, Chem. Phys. Lett. 108 p618 (1984)
    [21]D. H. Lee, Y. S. Cho, “Metalorganic chemical vapor deposition of TiO2:
    N anatase thin film on Si substrate”, Appl. Phys. Lett. 66 p815 (1995)139
    [22]H. Irie, Y. Watanabe, “Nitrogen-Concentration Dependence on
    Photocatalytic activity of x xN TiO − 2 Powders”, J. Phys. Chem. B 107
    p5483 (2003)
    [23]S. U. M. Khan, M. Al-Shahry, “Efficient Photochemical Water Spliting by
    a Chemically Modified n-TiO2”, Science 297 p2243 (2002)
    [24]Yuanzhi Li, Doo-Sun Hwang, “Synthesis and characterization of
    carbon-doped titania as an artificial solar light sensitive
    photocatalyst”,Chem. Phys. Lett. 404 p25 (2005)
    [25]H. Irie, Y. Watanabe, “Carbon-doped Anatase TiO2 Powders as a
    Visible-light Sensitive Photocatalyst”, Chem. Lett. 32 p772 (2003)
    [26]K. Nagaveni, M. S. Hegde, “Synthesis and Structure of Nanocrystalline
    TiO2 with Lower Band Gap Showing High Photocatalytic Activity”,
    Langmuir 20 p2900 (2004)
    [27]Takashi Tachikawa, Sachiko Tojo, “Photocatalytic Oxidation Reactivity
    of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by
    Time-Resolved Diffuse Reflectance Spectroscopy”, J. Phys. Chem. B 108
    p19299 (2004)
    [28]T. Umebayashi, T. Yamaki, H. Itoh, “Band gap narrowing of titanium
    dioxide by sulfur doping”, Applied Physics Letters 81 p454 (2002)
    [29]Cho Y. M., Choi W. Y., “Visible light-induced degradation of carbon
    tetrachloride on dye-sensitized TiO2”, Environ. Sci. Technol. 35 p966
    (2001)
    [30]I. Nakamura, N. Negishi, “Role of oxygen vacancy in the plasma- treated
    TiO2 photocatalyst with visible light activity for NO removal”, J. of
    Molecular Catalysis A:Chem. 161 p205 (2000)
    [31]R. G. Breckenridge, W. R. Hosler, Phys. Rev. 91 p793 (1953)
    [32]D. C. Cronemeyer, Phys. Rev. 113 p1222 (1959)
    [33]Serpone N., Maruthamuthu P., “Exploiting the interparticle electron
    transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol
    and pentachlorophenol : chemical evidence for electron and hole transfer
    between coupled semiconductors”, J. Photochem. Photobio. A : Chem. 85
    p247 (1995)
    [34]K. P. Kumar, K. Keizer, “Densification of nanostructured titania assisted
    by a phase transformation”, Nature 358 p48 (1992)
    [35]M. Gotic, M. Ivanda, “Microstructure of nanosized TiO2 obtained by
    sol-gel synthesis”, Materials Letter 28 p225 (1996)
    [36]Z. C. Wang, J. F. Chen, “Preparation of nanocrystalline TiO2 powders at
    near room temperature from peroxo-polytitanic acid gel”, Mater. Lett. 43
    p87 (2000)
    [37]Seung Bin Park, Won Wook So, “The crystalline phase stability of titania
    particles prepared at room temperature by the sol-gel method”, Journal of
    materials Science 36 p4299 (2001)
    [38]S. Music, M. Ivanda, S. Popovic, “Chemical and microstructural
    properties of TiO2 synthesized by sol-gel procedure”, Materials Science
    and Engineering B 47 p33 (1997)
    [39]Juan Yang, Sen Mei, “Hydrothermal Synthesis of Nanosized Titania
    Powders : Influence of Peptization and Peptizing Agents on the
    Crystalline Phases and Phase Transitions”, J. Am. Ceram. Soc. 83 p1361
    (2000)
    [40]Yitai Qian, Qianwang Chen, “Preparation of Ultrafine Powders of TiO2
    by Hydrothermal H2O2 Oxidation starting from Metallic Ti”, J. Mater.
    Chem. 3 p203 (1993)
    [41]D. J. Shaw, Introduction to colloid and surface chemistry, 4th deit.,
    Butterworths, London (1992)
    [42]M. P. Pilleni, Structure and reactivity in reverse micelles, Plenium, New
    York (1984)
    [43]J. Fang, J. Wang, “Synthesis of lead zirconate powders via a
    polyaniline-mediated microemulsion processing route”, Materials Letters,
    36 p179 (1998)
    [44]H. D. Nam, B. H. Lee, “Preparation of ultrafine Crystalline TiO2 Powders
    from Aqueous TiCl4 Solution by Precipitation”, Jpn. J. Appl. Phys. 37
    p4603 (1998)
    [45]H.K. Park, D. K. and Kim, “Effect of Solvent on Titania Particle
    Formation and Morphology in Thermal Hydrolysis of TiCl4”, J. Am.
    Ceram. Soc. 80 p743 (1997)
    [46]S. J. Kim, S. D. Park, “Homogeneous Precipitation of TiO2 Ultrafine
    Powders from Aqueous TiOCl2 Solution”, J. Am. Ceram. Soc. 82 p927
    (1999)
    [47]E. Matijevic, “Preparation and Mechanisms of Formation of Titania
    Dioxide Hydrosols of Narrow Sized distribution”, J. Colloid Interface Sci.
    6 p302 (1977)
    [48]Q. Zhang, L. Gao, “Effects of calcinations on the photocatalytic
    properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis”,
    Appli. Catal. B : Enviroment. 26 p207 (2000)
    [49]Q. Zhang, L. Gao, “Analysis of the structure of titanium tetrachloride
    derived precipitates”, Materials Science and Engineering A 343 p22
    (2003)
    [50]J. L. Woodhead, “Improvements in or Relating to Titanium Dioxide Gels
    and Sols”, British Patent 1412937 (1971)
    [51]G. Wiederhoft,K. Butje, “Nanodisperse Titanium Dioxide, Process for the
    Production Thereof and use Thereof”, U.S. Patent 5840111 (1998)
    [52]M. Sakamoto, H. Okuda, S. Koike, “Titania Sol”, U.S. Patent 5049309
    (1991)
    [53]K. Osterried, W. Hechler, “Precursor Preparation for the Production of
    Neutral Metal Oxide Sols”, U.S. Patent 5389361 (1995)
    [54]H. D. Bruckner, U. Hamann, “Photostabilization of Titanium Dioxide
    Sols”, U.S. Patent 5698205 (1997)
    [55]G. Sato, Y. Arima, “Titanium Dioxide Sol and Process for Preparation
    Thereof”, U.S. Patent 5403513 (1995)
    [56]M. Nakamura, K. Mori, “Titanium Dioxide Ceramic Paint and Method of
    Producing Same”, U.S. Patent 5795251 (1998)
    [57]H. Takahashi, A. Sakai, “Dendrite or Asteroidal Titanium Dioxide
    Micro –Particles”, U.S. Patent 5536448 (1996)
    [58]J. H. Jean and T. A. Ring, “Processing Monosized TiO2 Powders
    Generated with HPC Dispersant”, Am. Ceram. Soc. Bull 65 p1574 (1986)
    [59]J. H. Jean, T. A. Ring, “Effect of a Sterically Stabilizing Surfactant on
    the Nucleation, Growth and Agglomeration of monosized Ceramic Powders”,
    Colloids Surf. 29 p273 (1988)
    [60]M. A. Aegerter, M. Jafelicci, “Sol-Gel Sciences and Technology”,
    p106-152, World Scientific, Brazil (1989)
    [61]C. J. Brinker, G. W. Scherer, “Sol-Gel Science”, p21-42, Academic Press,
    New York (1990)
    [62]顧東翼, “化學辭典”, p227,建安出版社 (1994)
    [63]M. Henry, J. P. Jolivet, “Aqueous Chemistry of Metal Cations, Hydrolysis,
    Condensation, and Complexation”, p155, Springer-Verlag, Berlin (1992)
    [64]P. B. Dejohn, R. A. Hutchins, Tex. Chem. Color. 8 p69 (1976)
    [65]H. K. Schmidt, “Organically Modified Silicates and Ceramics an
    Two-Phase System : Synthesis and Processing”, J. Sol-Gel Sci. Tech. 8
    p557 (1997)
    [66]C. Lettmann, K. Hildenbrand, “Visible light photodegradation of
    4-chlorophenol with a coke-containing titanium dioxide photocatalyst”,
    Appl. Catal. B: Enviro. 32 p215 (2001)
    [67]T. Tsumura, N. Kojitani, “Composites between photoactive anatase – type
    TiO2 and adsorptive carbon”, Appl. Sur. Sci. 196 p429 (2002)
    [68]P. B. Avakyan, M. D. Nersesyan, “New materials for electronic
    engineering”, American Ceramic Society Bulletin 75 p2 (1996)
    [69]Z. Yue, L. Li, J. Zhou, “Preparation and characterization of NiCuZn ferrie
    nanocrystalline powders by auto-combustion of nitrate-citrate gels”,
    Materials Science and Engineering B 64 p68 (1999)
    [70]L. A. Chick, L. R. Pederson, “Glycine-nitrate combustion synthesis of
    oxide ceramic powders” Materials Letters 10 p6 (1990)
    [71]A. S. Mukasyan, C. Costello “Perovskite membranes by aqueous
    combustion synthesis: synethesis and Purification Technology” 25 p117
    (2001)
    [72]McKittrick, L. E. Bacalski, “The influence of processing parameters on
    luminescent oxides produced by combustion synthesis”, Display 19 p169
    (1999)
    [73]R. D. Purohit, S. Saha, “Nanocrystalline thoria powders via
    glycine-nitrate combustion”, Journal of Nuclear Materials 288 p7 (2001)
    [74]R. D. Purohit, B. P. Sharma, “Ultrafine ceria powders via glycine- nitrate
    combustion”, Materials Research Bulletin 36 p2711 (2001)
    [75]Y. Zhenxing, “Synthesis of nanocrystalline NiCuZn ferrite powders by
    sol-gel auto-combustion method”, Journal of Maganetism and Materials
    208 p55 (2000)
    [76]H. M. Kingston, Stephen J. Haswrll, “Microwave-Enhanced Chemistry”,
    Chap 1, 3-54, American Chemical Society, Washington (1997)
    [77]紀柏享、楊末雄、孫毓璋,“微波消化之方法與應用”, 中國化學,56
    卷4 期 p269-284 (1998)
    [78]A. T. More, A. Vira, “Biodegradation of trans-1,2-dichloroethylene by
    methane-utilizing bacteria in an aquifer simulator”, Environ. Sci.
    Technol.23 p403 (1989)
    [79]Y. M. Slokar, A. M. Le Marechal, Dyes Pigments 37 p335 (1998)
    [80]A. Houas, H. Lachheb, “Photocatalytic degradation pathway of methylene
    blue in water”, Applied Catalysis B: Environmental 31 p145 (2001)

    下載圖示 校內:2007-06-28公開
    校外:2007-06-28公開
    QR CODE