簡易檢索 / 詳目顯示

研究生: 王于愷
Wang, Yu-Kai
論文名稱: 單週期弦波激振下剛體傾覆限度研究
A Study on Overturning Limit of Rigid Bodies under One-Sine Pulse Type Excitation
指導教授: 姚昭智
Yao, Chao-Chih
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 非結構物近斷層效應浮置剛體傾覆限度
外文關鍵詞: non-structural component, near-fault ground motion, overturning, earthquake response, critical response
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2018年0206花蓮地震造成大量結構物受損,而非結構物震損也不容忽視,以花蓮國軍醫院進豐門診處為例,因近斷層效應下較大瞬時位移、地表速度,使院內多項非結構物傾倒,如藥品冰箱、水塔和病例櫃等;結構物雖無明顯損壞,醫療功能卻暫時停擺。此類震損於國內外層出不窮,因此本研究針對無固定之非結構物在近斷層震波下轉動行為,藉由實驗驗證已知理論公式,並經過簡化後提出適用於對稱、非對稱剛體傾覆模型,以判斷在工址設計反應譜下非結構物是否需加固以防傾倒。
    本研究以剛體自由擺動實驗,驗證Housner(1963)理論中剛體運動方程式,結果顯示非對稱剛體也符合Housner運動方程式;以振動台傾覆實驗驗證Nabeshima(2016)理論中傾覆限度解析解,並確認其假設符合實驗結果。
    各傾覆限度理論於使用上皆有不同限制,為建立一較簡易傾覆判斷方法,本研究根據理論、實驗結果進行適當簡化假設,將小擺角下重力造成力矩假設為定值,並忽略碰撞、摩擦能量散失,並將近斷層震波簡化為單週期弦波。假設對稱、非對稱剛體在無擺動或擺動一次後傾倒,由邊界條件、能量守恆原理,提出簡化傾覆限度模型。
    最後將簡化模型輸入Excel軟體,建立傾覆限度計算表,可由已知剛體幾何條件,自動計算多種頻率單週期弦波下剛體傾覆限度。將簡化模型結果與其他傾覆理論以及多組對稱、非對稱試體傾覆試驗結果比對,確認其具有一定可靠度。此一簡化模型僅需量測剛體重心位置,即可判斷浮置剛體於工址反應譜下是否有傾覆可能。

    Based on the experiences learned from earthquakes, it is recognized that the losses to the non-structural component can be significant. This study aims to identify the overturning limit of free-standing rigid bodies. A numerical solution on the input level of one-sine pulse as a substitute of a near-fault ground motion is derived for the overturning of rigid bodies. Based on the rigid blocks rocking and overturning experiments, rocking moment of gravity can be reduced to time-invariant parameter. This enables us to avoid the computation of complicated differential equation. By the conservation law of angular momentum and the conservation law of mechanical energy, the overturning limit of certain geometric shape under vary frequency ground motion can be defined. Import the simplified formulation into excel spreadsheet to build a numerical model, which calculates and plots overturning limit automatically.

    目錄 摘要 I Extend Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 8 1.3 文獻回顧 10 第二章 剛體傾覆性分析原理 13 2.1 Housner傾覆理論 14 2.1.1 自由擺動 14 2.1.2 剛體受固定地表加速度傾倒 17 2.1.3 剛體受弦波地表加速度傾倒 20 2.2 Makris傾覆限度理論 22 2.2.1 震波類型 22 2.2.2 運動與傾覆類型 22 2.2.3 理論結果應用 23 2.3 Nabeshima近斷層簡化假設 26 2.3.1 近斷層震波簡化 26 2.3.2 運動方程式推導 26 2.3.3 傾覆判別式 28 2.4 Ishiyama傾覆判別式 30 2.4.1 傾覆判別式 30 2.5 多種傾覆理論比較 32 第三章 剛體傾覆試驗 35 3.1 實驗設置 35 3.2 拉放實驗 38 3.2.1 實驗方法 38 3.2.2 量測數據換算 39 3.2.3 實驗結果 42 3.3 非對稱拉放實驗 46 3.3.1 實驗方法 46 3.3.2 實驗結果 47 3.4 振動台傾覆實驗 49 3.4.1 實驗方法 49 3.4.2 輸入震波 50 3.4.3 實驗結果 53 3.5 小結 57 第四章 簡化模型之建立與分析 59 4.1激振波簡化與剛體運動型式 59 4.1.1近斷層震波簡化 59 4.1.2運動型式 60 4.2運動方程式與傾覆限度計算 62 4.2.1理論假設條件 62 4.2.2運動方程式 65 4.3非對稱剛體修正 72 4.4非均質物體轉動慣量估算 75 4.5傾覆模型應用與比較 77 4.5.1傾覆限度計算表建立 77 4.5.2簡化模型與其他理論比較 79 4.5.3簡化模型與實驗結果比較 84 4.6 小結 90 第五章 結論與建議 91 5.1 結論 91 5.2 建議 92 參考文獻 93 附錄一 94 附錄二 95

    [1] Housner,G.W., ‘‘The behaviour of inverted pendulum structures during earthquakes.’’ Bull. Seismological Soc. of Am., 53(2), 404–417,(1963).
    [2] Ishiyama,Y.,‘‘Motions of rigid bodies and criteria for overturning by earthquake excitations. ’’ Earthq. Eng. Struct. Dyn. 10, 635–650.(1982).
    [3] Zhang,J., and Makris,N., ‘‘Rocking response of free-standing blocks under cycloidal pulses.’’ Journal of Engineering Mechanics.127,473–483.(2001).
    [4] Federal Emergency Management Agency (FEMA).,‘‘Reducing the Risk of Nonstructural Earthquake Damage – A Practical Guide.’’ FEMA E-74, Washington, D.C.(2011)
    [5] Nabeshima.K., Taniguchi.R., Kojima.K and Takewaki.I.,‘‘Closed-Form Overturning Limit of Rigid Block under Critical Near-Fault Ground Motions.’’Front. Built Environ. 2:9. (2016).
    [6] 林凡茹『重要建築附屬非結構震損調查與受震需求分析報告』,國家地震中心研討會(2018)。

    下載圖示 校內:2022-08-22公開
    校外:2022-08-22公開
    QR CODE