| 研究生: |
蔡敬賢 Tsai, Jing-Shian |
|---|---|
| 論文名稱: |
應用分佈元素模型於循環潛變行為之研究 A Study of Cyclic Ratchetting Behavior Based on the Distributed Element Model |
| 指導教授: |
江達雲
Chiang, Dar-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 分佈元素模型 |
| 外文關鍵詞: | distributed element model |
| 相關次數: | 點閱:33 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分佈元素模型在結合A-F移動硬化法則後,對材料循環潛變行為已具有良好的模擬效果,但對材料長期加載時的循環潛變行為仍無法有效描述。本研究即藉由觀察真實材料之行為反應,進而適當地修改A-F移動硬化法則,以期分佈元素模型可適切地模擬材料長期的循環潛變行為。最後針對1070鋼材進行循環潛變行為之模擬分析,並與文獻上的實驗結果作一比較。模擬結果顯示改良後的DEM對單軸向長期循環潛變行為具有良好的模擬能力。
The Distributed Element Model (DEM) Combining with the A-F non-linear kinematic hardening rule is capable of adequately describing the behavior of cyclic ratcheting of materials. However, it still has the disadvantage of not being able to describe appropriately the long-term behavior of cyclic ratcheting. The objective of this study is to improve the modeling capability of the modified DEM for cyclic ratcheting behavior of long-term . To account for this behavior, we modify the A-F non-linear kinematic hardening rule for long-term behavior of cyclic ratcheting according to experimental observations. In this study, we simulate the behavior of cyclic ratcheting of 1070 steel. According to the simulations, DEM Combining with the modified A-F non-linear kinematic hardening rule is capable of adequately describing the behavior of cyclic uniaxial ratcheting of 1070 steel.
1. Amstrong, P.J. and Frederick, C.O., 1966, “A Mathematical Representation of the Multiaxial Baushinger Effect, ”GEGB Report No.RD/B/N 731.
2. Abdel-Karim, M. and Ohno, N., 2000, “Kinematic Hardening Model Suitable for Ratchetting with Steady-State,” International Journal of Plasticity, Vol.16, pp.225-240.
3. Basuroychowdhury, I.N. and Voyiadjis, G.Z., 1998, “A Multiaxial Cyclic Plasticity Model for Non-Proportional Loading Cases,” International Journal of Plasticity, Vol.14, pp.855-870.
4. Bari, S. and Hassan, T., 2000, “Anatomy of Coupled Constitutive Models for Ratcheting Simulation,” International Journal of Plasticity, Vol. 16, pp.381-409.
5. Bari, S. and Hassan, T., 2001, “Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation,” International Journal of Plasticity, Vol. 17, pp.885-905.
6. Chiang, D.Y. and Beck, J.L., 1994, “A New Class of DEM for Cyclic Plasticity-I. Theory and Application,” International Journal of Solids Structures, Vol.31, No.4, pp.469-484.
7. Chiang, D.Y. and Beck, J.L., 1994, “A New Class of DEM for Cyclic Plasticity -II. On Important Properties of Material Behavior,” International Journal of Solids Structures, Vol.31, No.4, pp.485-496.
8. Chiang, D.Y., 1997, “A Phenomenological Model for Cyclic Plasticity,” ASME Journal of Engineering Materials and Technology, Vol.119, pp.7-11.
9. Chaboche, J.L., 1986, “Time-independent consistutive theories for cyclic plasticity,” International Journal of Plasticity, Vol.2, pp.149-188.
10. Chaboche, J.L., 1991, “On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects,” International Journal of Plasticity, Vol.7, pp.661-678.
11. Chaboche, J.L. and Rousselier, G., 1991, “On the Plasticity and Viscoplastic Constitutive Equations-Part I : Rules Developed With Internal Variable Concept,” ASME Journal of Pressure Vessel Technology, Vol.105, pp.153-158.
12. .Chaboche, J.L. and Jung, O., 1998, “Application of a Kinematic Hardening Viscoplasticity Model with Thresholds to the Residual Stress Relaxation,” International Journal of Plasticity, Vol.13, No.10, pp.785-807.
13. Corona, E., Hassan, T. and Kyriakides, S., 1996, “On the Performance of Kinematic Hardening Rules in Predicting a Class of Biaxial Ratcheting Histories,” International Journal of Plasticity, Vol. 12, No. 1, pp.117-145.
14. Dafalias, Y.F. and Popov, E.P., 1975, “A Modal of Nonlinear Hardening Materials for Complex Loading,” Acta Mech., Vol.21, 1975, pp.173-182
15. Estrin, Y., Braasch, H. and Brechet, Y., 1996, “A Dislocation Density Based Constitutive Model for Cyclic Deformation,” ASME Journal of Engineering Materials and Technology, Vol.118, No.441, pp.441-447.
16. Guionnet, C., 1992, “Modeling of Ratcheting in Biaxial Experiments,” Journal of Engineering Materials and Technology, Vol.114, pp.56-62.
17. Hassan, T. and Kyriakides, S., 1994, “Ratcheting of Cyclically Hardening and Softening Materials-Part I :Uniaxial Behavior,” International Journal of Plasticity, Vol.10, No.2, pp.149-184.
18. Hassan, T. and Kyriakides, S., 1994, “Ratcheting of Cyclically Hardening and Softening Materials-Part Ⅱ :Multiaxial Behavio,” International Journal of Plasticity, Vol.10, No.2, pp.185-212.
19. Iwan, W.D., 1966, “A Distributed Element Model for Hysteresis and Its Steady State Dynamic Response,” ASME Journal of Applied Mechanics, Vol.34, No.4, pp.893-900.
20. Iwan, W.D., 1967, “On a Class of Models for the Yielding of Continuous and Composite System,” ASME Journal of Applied Mechanics, Vol.34, No.3, pp.612-617.
21. Jiang, Y. and Sehitoglu, H., 1994, “Cyclic Ratchetting of 1070 Steel under Multiaxial Stress States,” International Journal of Plasticity, Vol.10, No.5, pp.579-608.
22. Kaneko, K., 1981, “Proposition of New Translation Rule in Kinematic Hardening,” Bulletion of the JSME Journal, 24, pp.9-14.
23. McDowell, D.J. and Moyar, G.J., 1986, “A More Realistic Model of No-linear Material Response: Application to Elastic-Plastic Rolling Contact,” Proc.2nd Int. Symp. on Contact Mechanics and Wear of Rail/Wheel Systems, University of Rhode Island, Kingston, July 8-11.
24. McDowell, D.L., and Moosbrugger, J.C., 1992, “Continuum Slip Foundation of Elasto-Viscoplasticity,”Acta. Mech, pp.73-93.
25. McDowell, D.L., 1995, “Stress State Dependence of Cyclic Ratcheting Behavior of Two Rails Steels,” International Journal of Plasticity, pp.397-421.
26. Mroz, Z., 1967, “On the Description of Anisotropic Work-Hardening,” Journal Mechanics and Physics of Solids, Vol.15, pp.163-178.
27. Mroz, Z., 1972, “A Description of Work-Hardening of Metals With Application to Variable Loading,” Proc. Symp. Foundations of Plasticity, ed. S. Sawczuk. Alphen van den Rijn, The Netherlands: Noordhoff, pp.551-560.
28. Ohno, N. and Wang, J.D., 1991, “Transformation of a Nonlinear Kinematic Hardening Rule to a Multisurface Form under Isothermal and Nonisothermal Conditions,” International Journal of Plasticity, Vol.7, pp.879-891.
29. Phillips, A. and Tang, J.-L., 1972, “The Effect of Loading Path on the Yield Surface at Elevated Temperatures,” International Journal of solids and structures, Vol.8, pp.463-474.
30. Portier, L. and Calloch, S., Marquis, D. and Geyer, P., 2000, “Ratchetting under Tension-Torsion Loadings:Experiments and Modelling,” International Journal of Plasticity, Vol.16, pp.303-335.
31. Prager, W., 1955, “The Theory of Plasticity-A Survey of Recent Achievements,” Proceedings of the Institution of Mechanical Engineers, London, Vol.169, pp.41-57.
32. Valanis, K.C. and Lee, C.F., 1984, “Endochronic Theory of Cyclic Plasticity With Applications,” ASME Journal of Applied Mechanic, Vol.51, pp.367-374.
33. Xia, Z., Kujawski, D. and Ellyin, F., 1996, “Effect of Stress and Ratcheting Strain On Fatigue Life of Steel,” International Journal of Fatigue, Vol.18, No.5, pp.335-341.
34. Xia, Z. and Ellyin, F., 1997, “A Constitutive Model with Capability to Simulate Complex Multiaxial Ratcheting Behaviour of Materials,” International Journal of Plasticity, Vol.13, No.1/2, pp.127-142.
35. Yoder, P.J., 1980, “A Strain-Space Plasticity Theory and Numerical Implementation,” Report No. EERL 80-07, California of Technology,American.
36. Ziegler, H., 1958, “A Modification of Prager’s Hardening Rule,” Quarterly of Applied Mathematics, Vol. 17, pp.55-65.
37. 江達雲, 1995, “非彈性系統的分析模式與識別”, 行政院國家科學委員會專題研究計劃成果報告, NSC.83-0424E-006-002 and NSC.84-2212E-006-087.
38. 郭義順, 1998, “循環鬆弛及潛變行為之研究,”碩士論文, 國立成功大學航空太空工程研究所.
39. 蘇愷宏, 1998, “材料後續降伏面之研究,”碩士論文, 國立成功大學航空太空工程研究所.
40. 廖清勳, 1999, “應用分佈元素模型於後續降伏面的研究,”碩士論文, 國立成功大學航空太空工程研究所.
41. 周慶珩, 2000, “非比例雙軸向循環潛變行為之研究,”碩士論文, 國立成功大學航空太空工程研究所.
42. 莫兆松, 2001, “基於模擬退火之全域最佳化方法及其於結構工程之應用,” 博士論文,國立成功大學航空太空工程研究所.