| 研究生: |
蔡宗穎 Tsai, Tsung-Ying |
|---|---|
| 論文名稱: |
Al5182材料輥軋表面微結構數學模型之建立與光反射性質之研究 Mathematical Model Developed for the Microstructure of Rolling Surface and Study on Reflection Properties of Al5182 Material |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 碎形 、粗糙度 、軋延表面結構函數 、光反射分布 |
| 外文關鍵詞: | fractal, roughness, rolling surface structure function, reflection distribution |
| 相關次數: | 點閱:76 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以碎形理論與粗糙度分析鋁合金Al5182在不同潤滑劑黏度、軋延速度以及裁減率條件下的軋延表面,欲透過此理論找出表面特徵與光反射性質之間的關係。本研究修正Majumdar-Tien方程式(M-T方程式)將各種軋延表面的碎形特徵參數進行軋延表面結構函數之建構,使此數學模型能描述真實軋延試件含粗糙度之表面形貌。再進一步以TracePro光線追跡軟體模擬各軋延條件下的碎形曲面經光反射後的照度(Illuminance),得出光反射分布(Reflection distribution)曲線。將分布曲線與利用散射量測儀量測軋延試片的結果相互比較並驗證了此數學模型之可信度。研究中發現到相較於軋延速度與試件厚度裁減率,潤滑黏度更能夠有效改變金屬軋延表面形貌。使用黏度低的潤滑劑所產生的試件表面會在軋延方向產生較大的週期長度(Period length),並發現在平行以及垂直軋延兩方向的週期長度(Lx與Ly)比值(Lx/Ly)越大,光反射光線分布越均勻。此外,使用黏度低的潤滑劑也會使表面粗糙度中的陡峭度(Kurtosis)降低,更從中得知陡峭度越低,光反射分布曲線中的最大值會越大。而觀察碎形參數得知軋延方向的週期長度(Lx)或兩方向週期長度比值(Lx/Ly)越大,光反射分布曲線最大值也會隨之提高,因此表面光亮程度較高。而同道次下,裁減率越大,反射分布曲線最大值也會增大;但軋延速度對此最大值來說較無單向性的影響。實驗結果發現,碎形雖可以模擬試件表面粗度和形貌,但尚無法模擬軋延表面上存在的缺陷,而且建構碎形面時的解析度尚不足以完美模擬真實表面,再加上實驗與TracePro軟體兩結果的差異,都是造成模擬與實驗之間誤差的原因。藉由本研究得知,使用M-T方程式與光線追跡分析照度,能夠有效模擬出光線集中程度的趨勢,藉此判定影響軋延表面光澤的主要因素。
In this study, the surfaces of aluminum 5182 alloy (Al5182) rolling specimens with fractal behavior in roughness were analyzed. There are three variables including the viscosity of lubricant, rolling speed and the reduction ratio in this study. The attempt to find the relationship between the fractal characteristics and reflection behavior of surface was made. The rolling surface structure function can be constructed by Majumdar-Tien (M-T) function and the reflection distribution of a surface is simulated with TracePro. Moreover, the reflection distribution of a real surface is measured by imaging sphere for scatter and appearance measurement (IS-SA). The results show that the viscosity of the lubricant is the most important factor for changing the morphology. With the lubricant of the lower viscosity, there is the longer period length in the rolling direction (Lx) and the lower kurtosis on rolling surfaces. Additionally, the bigger ratio of the period lengths in the parallel and perpendicular rolling directions (Lx/Ly) is, the less uniformity of surface is. Furthermore, it showed the trend that the maximum value of reflection distribution increases as the kurtosis decreases. The trend also shows that the bigger Lx or Lx/Ly is, the larger maximum value of reflection distribution is. There are some reasons for the difference in the results between simulations and experiments including the flaws on the surface, the resolution of fractal surfaces and different solutions between IS-SA and TracePro. However, it is still reliable on the results of simulation of the concentration of reflection with M-T function and finding the factors which affect the glossiness of the surfaces.
[1] G. H. Hardy, Weierstrass’s non-differentiable function, Transactions of the American Mathematical Society, vol. 17, no. 3, pp. 301-325, 1916.
[2] B. B. Mandelbrot, How long is the coast of Britain, Science, vol. 156, no. 3775, pp. 636-638, 1967.
[3] P. R. Nayak, Random process model of rough surfaces, Journal of Lubrication Tech, pp. 398-407, 1971.
[4] P. R. Nayak, Some aspects of surface roughness measurement, Wear, vol. 26, no. 2, pp. 165-174, 1973.
[5] M. Ausloos and D. Berman, A multivariate Weierstrass-Mandelbrot function, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 400, no. 1819, pp. 331-350, 1985.
[6] W. Yan and K. Komvopoulos, Contact analysis of elastic-plastic fractal surfaces, Journal of Applied Physics, vol. 84, no. 7, pp. 3617-3624, 1998.
[7] J. Gagnepain and C. Roques-Carmes, Fractal approach to two-dimensional and three-dimensional surface roughness, Wear, vol. 109, no. 1-4, pp. 119-126, 1986.
[8] A. Majumdar and C. Tien, Fractal characterization and simulation of rough surfaces, Wear, vol. 136, no. 2, pp. 313-327, 1990.
[9] H. Pawelski, Interaction Between Mechanics and Tribology for Cold Rolling of Strip with Special Emphasis on Surface Evolution, TU Bergakad. Freiberg, 2002.
[10] J. Wang, C. Wu, C. Liu, and J. Wei, Fractal simulation on random rough surface, International Conference on Automation, Mechanical Control and Computational Engineering, 2015.
[11] The Lighting Handbook, 4th edition ed. Zumtobel, 2013.
[12] H. K. Hammond III and Nimeroff, Measurement of sixty-degree specular gloss, Journal of Research, pp. 585-598, 1950.
[13] W. Budde, A reference instrument for 20°, 60° and 85° gloss measurements, Metrologia, vol. 16, no. 1, pp. 1-5, 1980.
[14] G. Obein, S. Ouarets, and G. Ged, Evaluation of the shape of the specular peak for high glossy surfaces, in IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, 901805 (11 pages), 2014.
[15] P. Vernhes, J. F. Bloch, A. Blayo, and B. Pineaux, Gloss optical elementary representative surface, Applied optics, vol. 47, no. 29, pp. 5429-5435, 2008.
[16] Y. Hosoya, T. Shiraishi, T. Odatsu, J. Nagafuji, M. Kotaku, M. Miyazaki and J. M. Powers, Effects of polishing on surface roughness, gloss, and color of resin composites, Journal of oral science, vol. 53, no. 3, pp. 283-291, 2011.
[17] R. Durikovic and I. Šedo, Real-time friendly representation of arbitrary brdf with appearance industry measurements, Journal of the Applied Mathematics, Statistics and Informatics, vol. 3, no. 1, pp. 17-26, 2007.
[18] D. W. Blodgett and S. Webb, Optical BRDF and BSDF measurements of human incisors from visible to mid-infrared wavelengths, The International Symposium on Biomedical Optics, International Society for Optics and Photonics, pp. 448-454, 2001.
[19] O. Y. Semchuk and M. Willander, Features of Electromagnetic Waves Scattering by Surface Fractal Structures. InTech, 2011.
[20] C. J. Lee and J. F. Lin, Optical parameters in high-efficiency optical receivers with a parabolic reflector before and after coating with Ag film, Journal of Solar Energy Engineering, vol. 136, no. 2, 021003 (15 pages), 2014.
[21] S. H. Shikder, M. Mourshed, and A. D. Price, Luminaire position optimisation using radiance based simulation: a test case of a senior living room, in Proceedings of the International Conference on Computing in Civil and Buuilding Engineering, 2010.
[22] G. Lee, J. H. Jeong, S.-J. Yoon, and D.-H. Choi, Design optimization for optical patterns in a light-guide panel to improve illuminance and uniformity of the liquid-crystal display, Optical Engineering, vol. 48, no. 2, 024001 (5 pages), 2009.
[23] B. B. Mandelbrot and R. Pignoni, The fractal geometry of nature, New York: WH freeman, 1983.
[24] 范光照 與 張郭益, 精密量測. 高立, 2005.
[25] ISO, ISO4288:Geometrical Product Specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture, 1996.
[26] SURFACE ROUGHNESS PROFILE PARAMETERS. Available: http://www.surfaceroughnesstester.com/surfaceroughnessparameters.html
[27] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soliman, Roughness parameters, Journal of Materials Processing Technology, vol. 123, no. 1, pp. 133-145, 2002.
[28] J. Feder, Fractals. Springer Science & Business Media, 2013.
[29] I. Miller, Probability, random variables, and stochastic processes, ed: Taylor & Francis Group, pp. 378-380, 1966.
[30] M. Berry and Z. Lewis, On the Weierstrass-Mandelbrot fractal function, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 370, no. 1743, pp. 459-484, 1980.
[31] B. Bhushan, Handbook of micro/nano tribology, CRC press, 1998.
[32] 黃峻峰, 逆向工程在車燈曲面重建技術之探討, 機械工程學系, 國立中央大學, 2006.
[33] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, A practical guide to splines, Springer-Verlag New York, 1978.
[34] Y. Mizuno and H. Sugiyama, Sliding and nonsliding joint constraints of B-spline plate elements for integration with flexible multibody dynamics simulation, Journal of Computational and Nonlinear Dynamics, vol. 9, no. 1, 011001 (10 pages), 2014.
[35] B-spline Surfaces: Construction. Available: https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/surface/bspline-construct.html
[36] M. FOX, Optical Properties of Solids, Oxford University Press, 2007.
[37] M. E. Nadal and E. A. Thompson, NIST reference goniophotometer for specular gloss measurements, Journal of Coatings Technology, vol. 73, no. 917, pp. 73-80, 2001.
[38] TracePro User's Manual Release 7.8, LAMBDA RESEARCH CORPORATION, 2016.
[39] C. P. Robert, Monte carlo methods, Wiley Online Library, 2004.
[40] 陳亭萱, 運用長脈衝雷射大面積精密拋光技術於SKD61模具鋼之系統參數最佳化設計與改質層微結構分析之研究, 機械工程學系, 國立成功大學, 2014.
[41] J. Raja, B. Muralikrishnan and S. Fu, Recent advances in separation of roughness, waviness and form, Precision Engineering, vol. 26, no. 2, pp. 222-235, 2002.
[42] T. R. Thomas, Rough surfaces, World Scientific, 1998.
[43] Specifications of Laboratory Scale High Speed 2-High/4- High Reverse Cold Mill, ed.
[44] RHEOMETRICS SERIES RHEOMETERS-AR-TA Instruments, TA Instrument. ed
[45] Radiant-Imaging-Sphere-for-Scatter-and-Appearance-Measurement-IS-SA, RADIANT VISION SYSTEMS. ed
[46] R. Yeo, R. Rykowski, D. Kreysar, and K. Chittim, The imaging sphere—the first appearance meter?, in The 5th Oxford Conference on Spectroscopy, pp. 87-103, 2006.