簡易檢索 / 詳目顯示

研究生: 簡維廷
Chien, Wei-Ting
論文名稱: 三維異向性線彈性體基本解應力場之數值計算
Numerical computation of the stress fields for the fundamental solution of 3-D linear elastic anisotropic solid
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 格林函數邊界元素法Stroh 公式
外文關鍵詞: Green’s function, boundary element method, Stroh formula
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討三維無窮域異向性材料受一集中力作用之格林函數是基本且重要的研究課題,文獻中藉由Stroh公式,可將格林函數之位移場與應力場用Stroh特徵值問題之特徵值表示,而此特徵值與異向性材料常數有關,一般而言特徵值需透過數值計算,本文建立數值分析程序考慮特徵值不重根之情況,以數值探討等向性材料與異向性材料之三維無限域受一集中力作用之位移場與應力場,並就數值結果做了討論。

    The Green’s function for a point force in three dimensional infinitely extended anisotropic materials is a basic and important research topic. In the literature, by means of the Stroh formalism the displacement and stress fields of the Green’s function are represented by Stroh eigenvalues. These Stroh eigenvalues are related to anisotropic material constants. In general, the eigenvalues are needed to be calculated numerically. In this thesis, numerical procedures are set up to compute the eigenvalues. With the assumption that the eigenvalues are distinct, the displacement and stress fields of the Green’s function of isotropic and anisotropic materials are numerically investigated, and the numerical results are discussed.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3本文綱要 3 第二章 基本公式 4 2.1 基本彈性理論公式 4 2.2無窮域之格林函數 6 2.3以Stroh特徵值表示無窮域格林函數之位移場 12 第三章 三維異向性材料格林函數之微分 19 3.1 應力場之積分表示式 19 3.2 以特徵值表示格林函數之微分 26 第四章 數值分析 31 4.1 數值方法之應用 31 4.2 等向性材料之數值結果驗證 33 4.3 異向性材料之數值結果驗證 40 第五章 結論 48 參考文獻 49 【附錄】特徵值退化情形之位移場與應力場 51

    Fredholm I. Sur les equation de l’equilibre d’um corps solide elastique.
    Acta Math. Vol.23,1-42.1900.

    Federico C., Buroni & Andres S. Three dimensional Green’s function and its derivative for materials with general anisotropic magneto electro elastic coupling. Proc.R.Soc. Vol.466,515-537.2010.

    Lifshitz, I. M. & Rozentsveig, L. N. Construction of the Green tensor
    for the fundamental equation of elasticity theory in the case of
    unbounded elastically anisotropic medium. Zh. eksper. i teoreticheskoi
    fiziki Vol.17,783-791.1947.

    Lee, V.-G. Explicit expressions of derivatives of elastic Green’s functions for general anisotropic materials. Mech. Res. Comm. Vol.30, 241-249.2003.

    Lee, V.-G. Derivatives of the three dimensional Green’s functions for anisotropic materials. Int. J. Solids Struct. Vol.46, 3471-3479.2009.

    Pan, E. & Chon, T. W. Point force solution for an infinite transversely isotropic solid. J.Appl. Mech. Vol.43,608-612.1976.

    Phan, A.V.,Gray L.J & Kaplan, T. Residue approach for evaluating the
    three dimensional anisotropic elastic Green’s function:multiple roots.
    Eng.Analysis with Boundary Element. Vol . 29,570-576.2005.

    Sales, M. A. & Gray L. J. Evaluation of the anisotropic Green’s function and its derivatives. Comput. Struct. Vol.69,247-254.1998.

    Ting, T. C. T. & Lee, V. G. The three dimensional elastostatic Green’s function for general anisotropic linear elastic solids. Q. J. Mech. Appl. Math. Vol.50,407-426.1996.

    Tonon, F.Pan, E. & Amadei, B. Green’s functions BEM formulation
    for 3D anisotropic media.Comput.Struct. Vol.79,469-482.2001.

    Tavara, L., Ortiz, J. E., Mantic, V. & Paris, F. Unique real variable
    expression of displacement and traction fundamental solutions covering
    all transversely isotropic elastic materials for 3D BEM.Int. J.Numer.
    Meth.Eng. Vol.74,776-798.2008.

    Wilson, R. B. & Cruse, T. A. Efficient implementation of anisotropic
    three dimensional boundary integral equation stress analysis. Int. J.
    Numer. Meth. Eng. Vol.12,1383-1397.1978.

    Wang, C.-Y. Elastic fields produced by a point source of general anisotropy. J. Eng. Math. Vol.32,41-52.1997,

    下載圖示 校內:2013-07-26公開
    校外:2013-07-26公開
    QR CODE