簡易檢索 / 詳目顯示

研究生: 黃志遠
Huang, Chih-Yuan
論文名稱: Bcl-2蛋白對於細胞體積調控, 細胞貼附與細胞移行現象的影響
The Novel Function of Bcl-2 on Cell Volume Regulation and Adhesion
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 32
中文關鍵詞: 細胞移行細胞貼附細胞體積調控
外文關鍵詞: Bcl-2, cell volume regulation, cell adhesion, cell migration
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞體積調控是一種控制電解質與水進出細胞膜的動態過程。大多數的哺乳類動物細胞透過溶質與水分排出細胞來抵禦外界低滲透濃度的壓力,這樣的過程我們稱之為細胞調控體積下降regulatory volume decrease (RVD)。 我們發現在細胞中主要負責抵抗細胞凋亡的蛋白質Bcl-2同時具有一種嶄新的功能,那就是在細胞調控體積下降與離子流動。Bcl-2蛋白質家族能夠插入脂質雙層膜並作為離子通道;Bcl-2本身也可以因為藉由與FAK/Paxillin結合而具有影響Focal adhesions區的潛力。我們提出Bcl-2可以扮演調節細胞體積與細胞黏附的作用,因為該蛋白質在立體結構上,5與6螺旋構造正好是其形成孔洞的位置,而將5螺旋中的WGR 144-146胺基酸位點作突變,會使Bcl-2失去其原有的抵抗細胞凋亡功能。我們在MDCK細胞中建立了WGR144-146突變的細胞株,依Bcl-2蛋白表現量不同分別稱作mI-2.4, mI-2.7。我們在低張溶液下比較了控制株C1、野生型B6與突變型mI-2.4, mI-2.7細胞的體積調控能力。我們發現突變株不只是失去了原有野生型具備的增強體積調節能力,反而更加速破壞了細胞所具有調控體積下降的能力。而在細胞貼附的實驗中,我們發現在不同的細胞外基質中,突變株都很明顯的使細胞貼附與細胞移行的能力下降了。這些結果證明了Bcl-2的WRG 144-146位點對於細胞體積調節、細胞貼附與細胞移行的重要性。

    Cell volume regulations are dynamic processes which control electrolytes and water movement across cell membrane. Most mammalian cells defend themselves against hypotonic stress by losing solutes together with osmotically obligated water, a process termed regulatory volume decrease (RVD). We have found that the key regulatory anti apoptotic protein Bcl-2 has a novel function on RVD and ion flux. Bcl-2 family proteins can insert in lipid bilayer and act as ion channels. Bcl-2 can also form a complex with paxillin/FAK which potentially influences cell adhesion signaling. Thus, we propose that Bcl-2 may function as a regulator of volume regulation and cell adhesion. Because 5-6 helices construct a critical region in pore forming of Bcl-2, mutation of WGR 144-146 motif at 5 helix results in disruption of Bcl-2 anti-apoptosis function. Two stable transfectants harboring WGR 144-146 motif of BH1 domain mutant Bcl-2 gene were established in MDCK cells, namely mI-2.4, mI-2.7. We compared the volume change of the plasmid control (C1), Bcl-2 wild-type (B6), and Bcl-2 mutant cells following superfusion with hypotonic solutions. We found that mutation of Bcl-2 not only abolished Bcl-2-induced increased in RVD, but also disrupted Bcl-2-accelerated RVD. In cell adhesion assay, Bcl-2 mutant cells showed markedly reduced adhesion and migration function on different extracellular matrix. These results indicate that WGR 144-146 motif is important for the novel function of Bcl-2 in cell volume regulation as well as cell adhesion and migration.

    Contents Abstract Chinese Abstract................................1 English Abstract................................2 Contents........................................3 Figure Contents.................................4 Introduction....................................5 Materials and methods...........................8 Cell Culture..................................8 Western Blotting..............................8 Measurements of Cell Volume.....................9 Immunoprecipitation.............................10 Adhesion Assay..................................10 Migration Assay.................................11 Immunofluroscence Staining......................11 Results.........................................12 Discussion......................................16 References......................................19 Figures.........................................24

    References

    1. Alan Richardson and J.Thomas Parsons. 1996. A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 380:538-540.
    2. B.J.Perrin and A.Huttenlocher. 2002. Calpain. The International Journal of Biochemistry & Cell Biology 34:722-725.
    3. Christine M.Sorenson and Nader Sheibani. 1999. Focal adhesion kinase, paxillin, and Bcl-2: Analysis of expression, phosphorylation, and association during morphogenesis. Developmental Dynamics 215:371-382.
    4. Dusko Ilic Yasuhide Furuta, and Snichi Aizawa. 1995. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539-544.
    5. Gross, A., J.M.McDonnell, and S.J.Korsmeyer. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899-1911.
    6. Kawatani, M. and M.Imoto. 2003. Deletion of the BH1 Domain of Bcl-2 Accelerates Apoptosis by Acting in a Dominant Negative Fashion. J. Biol. Chem. 278:19732-19742.
    7. Laura Masiero, Karen A.Lapidos, Indu Ambudkar, and Elise C.Kohn. 1999. Regulation of the RhoA pathway in human endothelial cell spreading on type IV collagen: role of calcium influx. J Cell Sci 112:3205-3213.
    8. Lepple-Wienhues, A., I.Szabo, T.Laun, N.K.Kaba, E.Gulbins, and F.Lang. 1998. The Tyrosine Kinase p56lck Mediates Activation of Swelling-induced Chloride Channels in Lymphocytes. J. Cell Biol. 141:281-286.
    9. Lowry, O.H., N.J.Rosebrough, A.L.Farr, and R.J.Randall. 1951. PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT. J. Biol. Chem. 193:265-275.
    10. McCarty NA and O'Neil RG. 1992. Calcium signaling in cell volume regulation. Physiol Rev. 72:1037-1061.
    11. Muchmore, S.W., M.Sattler, H.Liang, R.P.Meadows, J.E.Harlan, H.S.Yoon, D.Nettesheim, B.S.Chang, C.B.Thompson 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335-341.
    12. Nakamura, K., H.Yano, H.Uchida, S.Hashimoto, E.Schaefer, and H.Sabe. 2000. Tyrosine Phosphorylation of Paxillin alpha Is Involved in Temporospatial Regulation of Paxillin-containing Focal Adhesion Formation and F-actin Organization in Motile Cells. J. Biol. Chem. 275:27155-27164.
    13. Parsons, J.T. 2003. Focal adhesion kinase: the first ten years. J Cell Sci 116:1409-1416.
    14. Richard A.Klinghoffer, Christoph Sachsenmaier, Jonathan A.Cooper, and Philippe Soriano. 1999. Src family kinases are required for integrin but not PDGFR signal transduction. The EMBO Journal 18:2459-2471.
    15. Ross, P.E. and M.D.Cahalan. 1995. Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes. J. Gen. Physiol. 106:415-444.
    16. Sardini, A., J.S.Amey, K.H.Weylandt, M.Nobles, M.A.Valverde, and C.F.Higgins. 2003. Cell volume regulation and swelling-activated chloride channels. Biochimica et Biophysica Acta (BBA) - Biomembranes 1618:153-162.
    17. Schaller, M.D. and J.T.Parsons. 1995. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high- affinity binding site for Crk. Mol. Cell. Biol. 15:2635-2645.
    18. Schendel, S.L., Z.Xie, M.O.Montal, S.Matsuyama, M.Montal, and J.C.Reed. 1997. Channel formation by antiapoptotic protein Bcl-2. PNAS 94:5113-5118.
    19. Schendel, S.L., Mauricio Montal, and John C Reed. 1998. Bcl-2 family proteins as ion-channels. Cell Death & Differentiation 5:372-380.
    20. Shen, M.R., T.P.Yang, and M.J.Tang. 2002. A Novel Function of BCL-2 Overexpression in Regulatory Volume Decrease. J. Biol. Chem. 277:15592-15599.
    21. Sorenson, C.M. and N.Sheibani. 2002a. Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice. Am J Physiol Renal Physiol 282:F442-F450.
    22. Sorenson, C.M. and N.Sheibani. 2002b. Sustained activation of MAPK/ERKs signaling pathway in cystic kidneys from bcl-2 -/- mice. Am J Physiol Renal Physiol 283:F1085-F1090.
    23. Thomas, J.W., M.A.Cooley, J.M.Broome, R.Salgia, J.D.Griffin, C.R.Lombardo, and M.D.Schaller. 1999. The Role of Focal Adhesion Kinase Binding in the Regulation of Tyrosine Phosphorylation of Paxillin. J. Biol. Chem. 274:36684-36692.
    24. V.Urbach, I.Leguen, I.O'Kelly, and B.J.Harvey. 1999. Mechanosensitive Calcium Entry and Mobilization in Renal A6 Cells. Journal of Membrane Biology 168:29-37.

    下載圖示 校內:2005-08-30公開
    校外:2005-08-30公開
    QR CODE