| 研究生: |
張碩玲 Shuo-Ling, Chang |
|---|---|
| 論文名稱: |
荷載及退火溫度在矽單晶奈米壓痕行為及微觀結構變化上之效應分析 Effects of Load and Annealing Temperature on The Nanoindentation Behaviour and Microstructural Evolution of Single-Crystal Silicon |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 退火溫度 、矽單晶 、奈米壓痕 |
| 外文關鍵詞: | Nanoindentation, Single-Crystal Silicon, Annealing Temperature |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用奈米壓痕的技術測量矽單晶的機械性質並探討奈米壓痕荷載及加熱溫度對其巨觀機械性質與壓痕影響區微觀之影響,透過所發展之定位陣列技術,可快速、準確且有效率的來搜尋微小奈米壓痕,並利用聚焦離子束顯微鏡切割出穿透式電子顯微鏡之觀測試片。首先,本實驗利用半導體製程於 (100) 方向之矽單晶分別先加熱至250℃、350℃、450℃,並持溫2分鐘,再分別進行30mN、50 mN、70mN的荷載,接著對未加熱的矽單經分別進行30 mN、40 mN、70 mN,藉此比較未加熱及不同加熱條件下,其微觀組織之變化及壓痕影響區之奈米結晶結構(nano-crystalline)與完全非結晶型(amorphous)結構混合結構形成之特徵與機制。
巨觀機械性質的量測結果顯示,硬度(H)曲線與楊氏模數(E)曲線受壓痕尺寸效應、表面粗糙度(壓痕深度小於10 nm)所影響,楊氏模數約為178GPa,硬度值約為16GPa。從微觀結果顯示,矽單晶受奈米荷載及快速退火溫度之影響,造成壓痕器正下方之高應力塑性變形區的原子重新排列,單晶矽由原本的鑽石立方結構轉變為奈米結晶結構(nano-crystalline)與完全非結晶型(amorphous)結構混合結構。本研究發現,經過相同快速退火溫度後,荷載愈大時,壓痕影響區的底部產生愈多nano-crystalline與amorphous的混合結構;對未經過及經過250℃、350℃、450℃快速退火溫度後的矽單晶分別進行最大荷載為30 mN的奈米壓痕試驗,發現其壓痕影響區皆為amorphous結構;對未經過及經過250℃、350℃、450℃快速退火溫度後的矽單晶分別進行最大荷載為50 mN、70 mN的奈米壓痕試驗,發現其壓痕影響區為奈米結晶結構(nano-crystalline)與完全非結晶型(amorphous)結構混合結構,crystalline結構皆位在壓痕影響區底部,且隨著溫度的增加其分布的區域由底部逐漸往壓痕表面方向擴增。
The study investigates the nano-mechanical properties of single-crystal silicon using a nanoindentation technique. The indented position is accurately identified using a proprietary position array system, and TEM specimens are extracted by the focused ion beam microscope technique quickly. The effects of indentation load and the annealing temperature on the microstructural evolution are also evaluated. The single-crystal silicon is annealed at the temperature of 250℃, 350℃, 450℃ for 2 min respectively,and then indented to the maximum load of 30 mN, 50mN, 50mN respectively.
The overall tendencies of the hardness and Young’s modulus curves are governed by the indentation size effect and surface roughness for indentation depths of less than 10 nm, and by the substrate effect for indentation depths greater than 10% of the substrate. The hardness and Young’s modulus are measured about 16GPa and 178GPa respectively. The microstructural observations reveal that nanoindentation induces an atoms reorganization, and results in the formation of high-stress plastic deformation regions beneath the indenter. The microstructure of indentation affected zone of silicon substrate transfers from diamond cubic structure to mixed structure of nano-crystalline and amorphous.A complete amorphous phase within the indentation zone is produced at 30mN. However, in the specimens loaded at 40mN and 70mN, the microstructure of the indentation zone is characterized by a mixed structure comprising amorphous phase and nanocrystalline phase. The microstrucutral results also confirmed that the load-dependent nature of the unloading curves, namely pop-out events, is related to the different phase transformation mechanisms at various indentation loads.
1.Daibin Ge, Vladislav Domnich, and Yury Gogotsi. “Thermal stability of metastable silicon phases produced by nanoindentation,”Journal of applied physics. Vol 95, No. 5, 2004, pp.2725-2731.
2.矽晶圓半導體材料技術/林明獻編著,全華圖書,2007.09, pp.2-62.
3.G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A, 253 (1998) 151-159.
4.T. H. Wang, T. H. Fang and Y. C. Lin, “Analysis of the substrate effects of strain-hardening thin films on silicon under nanoindentation,” Applied Physics A, 86 (2007) 335-341.
5.N. Tayebi, A. A. Polycarpou and T. F. Conry, “Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques,” Journal of Materials Research, Vol. 19 No. 6 (2004) 1791-1802.
6.R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, 50 (2002) 23-38.
7.Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad and W. O. Soboyejo, “Indentation size effects in the nano- and micro-hardness of fcc single crystal metals,” Materials Science and Engineering A, 434 (2006) 178-187.
8.K. Durst, B. Backes and M. Göken, “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, 52 (2005) 1093-1097.
9.C. Tsou, C. Hsu and W. Fang, “Interfaces friction effect of sliding contact on nanoindentation test,” Sensors and Actuators A, 117 (2005) 309-316.
10.S. Sebastian and S. K. Biswas, “Effect of interface friction on the mechanics of indentation of a finite layer resting on a rigid substrate,” Journal of Physics D, 24 (1991) 1131-1140.
11.H. Pelletier, J. Krier and P. Mille, “Characterization of mechanical properties of thin films using nanoindentation test,” Mechanics of Materials, 38 (2006) 1182-1198.
12.X. Li, B. Bhushan, K. Takashima, C. W. Baek and Y. K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, 97 (2003) 481-494.
13.Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Materials Science and Engineering A, 427 (2006) 232-240.
14.M. Sakai, N. Hakiri and T. Miyajima, “Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales,” Journal of Materials Research, Vol. 21 No. 9 (2006) 2298-2303.
15.S. Rajagopalan and R. Vaidyanathan, “Nano- and Microscale Mechanical Characterization Using Instrumented Indentation,” JOM, Vol. 54 No. 9 (2002) 45-48.
16.P. S. Pizani, R. G. Jasinevicius and A. R. Zanatta, “Effect of the initial structure of silicon surface on the generation of multiple structural phases by cyclic microindentation,” Applied Physics Letters, 89, 031917 (2006) 1-3.
17.H. C. Barshilia and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy,” Surface and Coatings Technology, 155 (2002) 195-202.
18.R. Rabe, J. –M. Breguet, P. Schwaller, S. Stauss, F. –J. Patscheider and J. Michler, “Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope,” Thin Solid Films, 469-470 (2004) 206-213.
19.J. Yan, H. Takahashi, J. Tamaki, X. Gai and T. Kuriyagawa, “Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers,” Applied Physics Letters, 87, 211901 (2005) 1-3.
20.K. D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation,” Materials Characterization, 49 (2003) 149-156.
21.M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. bozet, ”Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, Vol. 87 No.11 (2000) 7753-7757.
22.F. K. Mante, G. R. Baran and B. Lucas, “Nanoindentation studies of titanium single crystals,” Biomaterials, Vol. 20 No.11 (1999) 1051-1055.
23.M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
24.N. Yu, Andreas A. Polycarpou and Thomas F. Conry, “Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation,” Thin Solid Films, 450 (2004) 295-303.
25.C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
26.M. Tanaka, K. Furuya and T. Saito, “TEM observation of structural differences between two types of Ni silicide/Si thin films caused by FIB irradiation,” Thin Solid Films, 319 (1998) 101-105.
27.H. Hosokawa, K. Shimojima, H. Iwasaki and M. Mabuchi, “Nanomachining of nanocrystalline nickel by focused ion beam,” Philosophical Magazine Letters, Vol. 84 No. 11 (2004) 713-718.
28.M. Tanaka, K. Furuya and T. Saito, “Radiation effects of focused ion beam microfabrication on Ni disilicide thin films by in situ transmission electron microscopy,” Appl. Phys. Lett., Vol. 68 No. 7 (1996) 961-963.
29.M. Tanaka, K. Furuya and T. Saito, “TEM observation of FIB induced damages in Ni3Si/Si thin films,” Nuclear Instruments and Methods in Physics Research B, 127/128 (1997) 98-101.
30.張守一,”奈米壓痕測試技術及其特殊應用(Instrumented Nanoindentation Technology and Its Special Applications),”工業材料雜誌,244期,96年4月。
31.咎世蓉、顏宏儒,”應用奈米壓痕量測技術於薄膜之機械性質量測,” 工業材料雜誌,213期,93年9月。
32.Jiwang Yan, Hirokazu Takahashi, Xiaohui Gai, Hirofumi Harada, Jun’ichi Tamaki and Tsunemoto Kuriyagawa, ”Load effects on the phase transformation of single-crystal silicon during nanoindentation tests,” Mater. Sci. Eng. A, 423 (2006) 19–23.
33.I. Zarudi, L. C. Zhang, W. C. D. Cheong and T. X. Tu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters,” Acta. Materialia. 53 (2005) 4795-4800.
34.V. Domnich,Y. Gogotsi and S. Dub, ”Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Appl. Phys. Lett. 76 (2000) 2214-2216.
35.I. Zarudi, J.Zou and L.C.Zhang, “Microstructures of phases in indented silicon:A high resolution characterization,” Appl. Phys. Lett. 82 (2003) 874–876.
36.R.Rao, J.E.Bradby, S.Ruffell, J.S Williams,”Nanoindentation-induced phase transformationmin crystalline silicon and relaxed amorphous silicon,” Microelectronics Journal 38 (2007) 722-726.
37.Vladislav Domnich, Yvonne Arstyn, Waltraud M. Kriven and Yury Gogotsi,”Temperature Dependence of Silicon Hardness:Experimantal Evidence of Phase Transformation,” Rev.Adv.Mater.Sci.17 (2008) 33-41.
38.Shu-Te Ho, Yu-Hsien Chang, and Heh-Nan Lin,”Conducting atomic force microscopy study of phase transformationin silicon nanoindentation” Journal of Applied Physics.96 (2004) 3562-3564.
39.J.Jang, M.J.Lance, S.Wen, T.Y.Tsui, G.M. Pharr, “Indentation-induced phase transformations in silicon:influences of load, rate and indenter angle on the transformation behavior,” Acta. Mater. 53(2005) 1759-1770.
40.Bradby J.E, Williams J.S, Wong-Leung MV, Swain MV and Munroe P, ”Mechanical deformation in silicon by micro-indentation,”, J. Mater. Res. 16 (2001) 1500-1507.
41.Zarudi.I, Zou.J, McBride.W and Zhang.L.C, “Amorphous structures induced in monocrystalline silicon by mechanical loading,” Appl. Phys. Lett. 85 (2004) 932-934.
42.Zarudi I, Zhang LC and Swain MV, “Microstructure evolution in monocrystalline silicon in cyclic microindentations,” J. Mater. Res. 18 (2003) 758-761.
43.Zarudi I, Zhang LC and Swain MV, “Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter,” Appl. Phys. Lett. 82 (2003) 1027-1029.
44.K.Minowa and K.Sumino, “Stress-Induced Amorphization of a Silicon Crystal by Mechanical Scratching,” Phys.Rev.Lett. 69 (1992) 320-322.
45.Y.Q.Wu and Y.B.Xu, “Lattice-distortion-induced amorphization in indented [110] silicon,” J. Mater. Res. 14 (1999) 682-687.
46.Jiwang Yana, Hirokazu Takahashi and Jun’ichi Tamaki, Xiaohui Gai, Tsunemoto Kuriyagawa, “Transmission electron microscopic observation of nanoindentation made on ductile-machined silicon wafers,” APPLIED PHYSICS LETTERS 87, 211901-1~ 211901-3 (2005).
47.M.Tachi, Suprijadi, S.Araiz and H.Saka, “On the dislocation mechanism of amorphization of Si byindentation,” Philosophical Magazine Letters 82 (2002) 133-139.
48.Zhang LC, Tanaka H, “Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis,” Wear 211 (1997) 44-53.
49.A.Kailer, Y.G.Gogtsi, and K.G.Nickel, “Phase transformation of silicon caused by contact loading,” J. Appl. Phys 81(1997) 3057-3062.
50.B.Haberl, J.E.Bradby, M.V.Swain, and J.S.Williams, “Phase transformations induced in relaxed amorphous silicon by indentation at room temperature,” Appl. Phys. Lett. 85 (2004) 5559-5561.
51.H. Saka, A. Shimatani, M. Suganuma and Suprijadi, “Transmission electron microscopy of amorphization and phase transformation beneath indents in Si,” Philosophical magazine A 82 (2002) 1971-1981
52.I. Zarudi, L.C. Zhang, ” Structure changes in mono-crystalline silicon subjected to indentation—experimental findings,”Tri. Int. 32 (1999) 701–712.
53.Y.Q.WU, X.Y.YANG and Y.B.XU,”Cross-sectional Electron Microscopy Observation On The Amorphized Indentation Region In [001] Single-Crystal Silicon,” Acta.Mater. 47 (1999) 2431-2436.
54.Sheng-Rui Jian,”Mechanical Deformation Induced in Si GaN Under Berkovich Nanoindentation,” Nanoscale Res Lett 3 (2008) 6-13.
55.Xu, Lin-Yan ; Li, Da-Chao ; Hu, Xiao-Tang ; Huang, Yu-Bo,” Measurement of Young's modulus of nanobeam based on AFM,” Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology. 40 (2007) 816-820.
56.A. J. Leistner, A. C. Fischer-Cripps and J. M. Bennett, “Indentation hardness and modulus of the surface of a large super-polished single crystal silicon sphere,” Proceedings of the International Society of Optical Engineering (SPIE), Bellingham, 5179 Optical Materials and Strucyures Technologies (2003) 215-222.