簡易檢索 / 詳目顯示

研究生: 馮鼎軒
Feng, Ting-Hsuan
論文名稱: RSA 上的低解密指數攻擊法
Attacks on RSA with Low-Exponet Private Key
指導教授: 柯文峰
Ke, Wen-Fong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 18
中文關鍵詞: RSA低解密指數
外文關鍵詞: RSA, Low-exponent
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們討論RSA 密碼體系在低指數私鑰時的安全性。首先介紹
    RSA 的定義與加解密方式。接著是本篇的第一種攻擊法Wiener’s
    Attack 的運作。以Wiener’s Attack 作為啟發,第二個要介紹的是
    Dan Boneh & Glenn Durfee 所提出的改良,他們將Wiener 的結果
    加以優化。Dan Boneh & Glenn Durfee 同時也提出一個新的RSA 攻
    擊法。而在最後的小節裡,會給出一些建議以避免這些低指數攻擊法。

    We discuss the security of RSA cryptosystem with low-exponent pri-
    vate key. Firstly, we give a brief de nition for RSA. Sencondly, we
    show how does Wiener's Attack work. An improvement of the result of
    Wiener's Attack is given by Dan Boneh & Glenn Durfee in 2000. They
    propose a di erent view for RSA cryptosystem. Some suggestions for
    avoiding these attacks are include in the last section.

    1. Introduction 1 2. Cryptosystem and RSA 1 2.1. Cryptosystem 1 2.2. RSA 2 3. Wiener Theorem and his Attack 2 3.1. Continued Fraction 3 3.2. Wiener’s theorem and attack 4 4. The Idea of Dan Boneh & Glenn Durfee 5 5. Lattices and their properties 6 5.1. Lattices 6 5.2. Determinant and Properties 7 5.3. LLL-reduced 9 6. Lattice attacks 9 7. Using the Chinese remainder theorem to avoid attacks 15 8. Conclusions 16 Appendix A. LLL basis reduction algorithm 17 References 18

    [1] C. Henri. A course in computational algebraic number theory. Springer, 2000.
    [2] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0:292.IEEE
    Transactions on Information Theory, vol. 46, no. 4, pp.1339-1349,2000.
    [3] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
    Journal of Cryptology, vol.10, pp.233-260, 1997.
    [4] D. Micciancio and S. Goldwasser. Springer, 2002
    [5] D. R. Stinson. Cryptography: Theory and Practice Third Edition. Chapman & Hall, United
    States, 2005.
    [6] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information
    Theory, vol. 36, no. 3 , pp.553-558, 1990.
    [7] N. Howgrave-Graham. Finding small roots of univariarte modular equations revisted. In proceedings
    Cryptography and Coding, Lecture Notes in Computer Science, vol. 1355, Springer-
    Verlag, pp.131-142, 1997.
    [8] R.Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and publickey
    cryptosystems. Communications of the ACM, vol. 21, no. 2, pp.120-126,1978.

    下載圖示 校內:2016-07-24公開
    校外:2016-07-24公開
    QR CODE