| 研究生: |
鄭杰晰 Jheng, Jie-Si |
|---|---|
| 論文名稱: |
具電壓調變波型能力之雙波段紫外光檢測器 Dual-band Ultraviolet Photodetector with Voltage-tunable Spectrum Ability |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 雙波 、氧化鎂鋅 、氧化鋅 、三氧化二鎵 、氮化鎵 、二氧化矽 、紫外光 |
| 外文關鍵詞: | dual-band, MgZnO, ZnO, Ga2O3, GaN, SiO2, UV light |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究具電壓調變波型能力之雙波段紫外光檢測器。該檢測器由MgZnO、ZnO、Ga2O3、GaN與SiO2成分所構成,並分別由射頻磁控濺鍍法、金屬有機物氣象沉積法、電漿輔助化學氣象沉積法製作。對於ZnO紫外光檢測器,當退火300度時在5V能夠有最好的響應約7.27 × 10-3,且位於波長380 nm。對於Ga2O3紫外光檢測器,800度退火在5V能有最好紫外光對可見光拒斥比的特性,且響應最大值的波長位於波長250 nm。對於MgZnO紫外光檢測器,不論使用10 %或20 %靶材,晶格品質跟實際的鎂含量都會隨著退火溫度提升而提高,而最好的條件在退火攝氏700度時。另外兩種含量的波長吸收邊緣分別在337 nm與310 nm。對於雙波段MgZnO紫外光檢測器,則必需插入SiO2用以避免鎂擴散導致邊界模糊,以及將不同吸收波段在高與低電壓間分離。而波長吸收的分別是310 nm到320 nm,總共位移了10 nm。於此,在更大波段位移的設計則繼續沿用插入SiO2的設計。對於具電壓調變波型能力之雙波段紫外光檢測器(UVB到UVA),在MgZnO/SiO2/ZnO結構中,具有200 nm MgZnO厚度的樣本有較明顯的雙波特性。吸收波長邊緣從310 nm (UVB)到365 nm (UVA)共位移了55 nm。對於具電壓調變波型能力之雙波段紫外光檢測器(UVC到UVB),在Ga2O3/MgZnO結構中,具未進行退火Ga2O3樣本有較明顯的雙波特性。吸收波長邊緣從250 nm (UVA)到320 nm (UVB)共位移了70nm。此外樣本在Ga2O3與MgZnO間插入25 nm厚的SiO2,可將MgZnO的吸收波段延後至24V才開始主導。對於具電壓調變波型能力之雙波段紫外光檢測器(UVC到UVA),在MgZnO/SiO2/ZnO結構中,具有100 nm SiO2厚度的樣本意外地出現帶通型的吸收波型,而將SiO2厚度提升至400nm則可直接將其視為絕緣層,所有的光電子都來自Ga2O3,而在200 nm SiO2厚度且其Ga2O3在攝氏300度退火下的樣本有較明顯的雙波特性。吸收波長邊緣從250 nm (UVC)到365 nm (UVA)共位移了115 nm。
In this dissertation, the voltage-tunable dual-band UV PD has been investigated. The dual-band UV PD consisted of MgZnO, ZnO, Ga2O3, GaN, and SiO2, which was grown by RF magnetron sputter, MOCVD, PECVD, respectively. For the ZnO UV PD, the best thin-film quality was at 300C annealing and to had the highest PDCR to 1810.18 at 5V. And due to better crystal quality, the device annealing at 300 ℃ exhibited the best responsivity at 5V, which was 7.27 × 10-3, and was located at 380 nm. For the Ga2O3 UV PD, the annealing condition at 800 ℃ had the best performance of ultraviolet to visible light rejection ratio, and the maximum of responsivity was located at 250nm. For the MgZnO UV PD, no matter used 10% Mg content target or 20% Mg content target, the cristal quality and real Mg composition were increased as arisen annealed temperature. And the best condition was annealing at 700 ℃. Moreover, the wavelength absorbed edge was 337 nm and 310 nm, which device made by 10% and 20% Mg content target, respectively. For the MgZnO dual-band UV PD, the structure should be inserted as a blocking layer to prevent the Mg atom diffusion, on the one hand. On the other hand, it separated the mainly absorbed wavelength between low and high bias voltage; otherwise, the edge between layers with different Mg composition would be blurred. The edge of the absorbed wavelength was shifted about 10 nm, which from 310 nm to 320 nm.
Based on this, the SiO2 inserting layer was considered in our voltage-tunable UV PD design, which was design to cross different ranges of absorbed wavelength. For voltage-tunable UVB to UVA dual-band UV PD, the MgZnO/SiO2/ZnO dual-band UV PD had an obvious voltage-tunable dual-band performance with 200 nm MgZnO thickness. And the edge of the absorbed wavelength shifted about 55 nm, from 310 nm (UVB) to 365nm (UVA). For voltage-tunable UVC to UVB dual-band UV PD, the Ga2O3/MgZnO dual-band UV PD had an obvious voltage-tunable dual-band performance without Ga2O3 annealing. And the edge of the absorbed wavelength shifted about 70 nm, which from 250 nm (UVC) to 320nm (UVB). Furthermore, inserted 25 nm SiO2 between Ga2O3 and MgZnO could extend the MgZnO absorbed wavelength to appear at 24 V. For voltage-tunable UVC to UVA dual-band UV PD, the Ga2O3/SiO2/GaN dual-band UV PD accidentally exhibited a band-pass liked performance at 600 ℃ annealings, which with 100nm SiO2 thickness. When the thickness of SiO2 increased to 400 nm, all of the photon-electrons of devices were generated from Ga2O3. The Ga2O3/SiO2/GaN dual-band UV PD had an obvious voltage-tunable dual-band performance with 200 nm SiO2 thickness and 300 ℃ Ga2O3 annealings. And the edge of the absorbed wavelength shifted about 115 nm, which from 250 nm (UVC) to 365nm (UVA).
[1] Yuehua An, Xulong Chu, Yuanqi Huang, Yusong Zhi, Daoyou Guo, Peigang Li, Zhenping Wu, and Weihua Tang. Au plasmon enhanced high performance β-Ga2O3 solar-blind photodetector, Progress in Natural Science-Materials International, 26(1), 65-68, 2016.
[2] Xiang He Chen, Shun Han, You Ming Lu, Pei Jiang Cao, Wen Jun Liu, Yu Xiang Zeng, Fang Jia, Wang Ying Xu,Xin K Liu, and De Liang Zhu. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (-201) orientation β-Ga2O3 deposited by the PLD method, Journal of Alloys and Compounds, 747, 869-878, 2018.
[3] G. Ariyawansa, M. B. M. Rinzan, M. Alevli, M. Strassburg, N. Dietz, A. G. U. Perera, S. G. Matsik, A. Asghar, I. T. Ferguson, H. Luo, A. Bezinger, and H. C. Liu. GaN/AlGaN ultraviolet/infrared dual-band detector, Applied Physics Letters, 89(9), 091113, 2006.
[4] K. P. Korona, A. Drabińska, P. Caban, and W. Strupiński. Tunable GaN/AlGaN ultraviolet detectors with built-in electric field, Journal of Applied Physics, 105(8), 083712, 2009.
[5] Vijay S. Rana, Jeevitesh K. Rajput, Trilok K. Pathak, and L.P. Purohit. Multilayer MgZnO/ZnO Thin Films for UV Photodetectors, Journal of Alloys and Compounds, 764, 724-729, 2018.
[6] Tsuyoshi Takagi, Hiroshi Tanaka, Shizuo Fujita, and Shigeo Fujita. Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (x ≃ 0.5) and Their Application to Solar-Blind Region Photodetectors, Japanese Journal of Applied Physics part 2-Letters & Express Letters, 42(4B), L401-L403, 2003.
[7] Siyi Chang, Mengting Chang, and Yingping Yang. Enhanced Responsivity of GaN Metal–Semiconductor–Metal (MSM) Photodetectors on GaN Substrate. IEEE Photonics Journal, 9(2), 6801707, 2017.
[8] Zhe Li, Yu Xu, Jiaqi Zhang, Yaolin Cheng, Dazheng Chen, Qian Feng, Shengrui Xu, Yachao Zhang, Jincheng Zhang, Yue Hao, and Chunfu Zhang. Flexible Solar-Blind Ga2O3 Ultraviolet Photodetectors With High Responsivity and Photo-to-Dark Current Ratio, IEEE Photonics Journal, 11(6), 6803709, 2019.
[9] Meng Li, Man Zhao, Dayong Jiang, Qian Li, Chuncai Shan, Xuan Zhou, Yuhan Duan, Nan Wang, and Jiamei Sun. Optimizing the performance of ZnO/Au/MgZnO/SiO2 sandwich structured UV photodetectors by surface plasmons in Ag nanoparticles, Applied Physics A-Materials Science & Processing, 126(4), 310, 2020.
[10] Ching-Ting Lee, Tzu-Shun Lin, Hsin-Ying Lee, and Day-Shan Liu. Dual-band ultraviolet photodetectors comprising nanostructured MgZnO on ZnO films. Journal of Vacuum Science & Technology B, 36(6), 061203, 2018.
[11] Nan Hu, Dayong Jiang, Guoyu Zhang, Zexuan Guo, Wei Zhang, Xiaojiang Yang, Shang Gao, Tao Zheng, Qingcheng Liang, and Jianhua Hou. Voltage controlled dual-wavelength ZnO/Au/MgZnO UV photodetectors, Materials Research Bulletin, 103, 294-298, 2018.
[12] W. Y. Weng, T. J. Hsueh, S. J. Chang,G. J. Huang, and H. T. Hsueh. A β-Ga2O3/GaN Hetero-Structured Solar-Blind and Visible-Blind Dual-Band Photodetector, IEEE Sensors Journal, 11(6), 1491-1492, 2011.
[13] J. D. Hwang and G. S. Lin. Single- and dual-wavelength photodetectors with MgZnO/ZnO metal-semiconductor-metal structure by varying the bias voltage, Nanotechnology, 27(37), 375502, 2016.
[14] Daqian Ye, Zengxia Mei, Huili Liang, Lishu liu, Yonghui Zhang, Junqiang Li, Yaoping Liu, Changzhi Gu, and Xiaolong Du. A three-terminal ultraviolet photodetector constructed on a barrier-modulated triple-layer architecture, Scientific Reports, 6, 26169, 2016.
[15] X. H. Xie, Z. Z. Zhang, C. X. Shan, H. Y. Chen, and D. Z. Shen. Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction, Applied Physics Letters, 101(8), 081104, 2012.
[16] S. V. Averine, Y. C. Chan, and Y. L. Lam. Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures, Solid-State Electronics, 45(3), 441-446, 2001.
[17] Jinwook Bum, Kerry I. Litvin, William J. Schaff. and Lester F. Eastman. Optimization of High-speed Metal-Semiconductor-Metal Photodetectors. IEEE Photonics Technology Letters, 6(6), 722-724, 1994.
[18] D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi. Solar-blind AlGaN photodiodes with very low cutoff wavelength, Applied Physics Letters, 76(4), 403-405, 2000.
[19] Turgut Tut, Mutlu Gokkavas, Ayse Inal, and Ekmel Ozbay. AlxGa1-xN-based avalanche photodiodes with high reproducible avalanche gain, Applied Physics Letters, 90(16), 163506, 2007.
[20] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa. High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN, Applied Physics Letters, 75(2), 247-249, 1999.
[21] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç. A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98(4), 041301, 2005.
[22] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner. Wide band gap ferromagnetic semiconductors and oxides, Journal of Applied Physics, 93(1), 1-13, 2003.
[23] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa. MgxZn1-xO as a II-VI widegap semiconductor alloy, Applied Physics Letters, 72(19), 2466-2468, 1998.
[24] Jang-Won Kang, Yong-Seok Choi, Byeong-Hyeok Kim, Chang Goo Kang, Byoung Hun Lee, C. W. Tu, and Seong-Ju Park. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode, Applied Physics Letters, 104(5), 051120, 2014.
[25] Hongyu Chen, Pingping Yu, Zhenzhong Zhang, Feng Teng, Lingxia Zheng, Kai Hu, and Xiaosheng Fang. Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer, Small, 12(42), 5809-5816, 2016.
[26] A. Schleife, M. Eisenacher, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt. Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1-xO and CdxZn1-xO, Physical Review B, 81(24), 245210, 2010.
[27] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M. W. Cho, T. Yao, and A. Setiawan. Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire, Journal of Applied Physics, 98(5), 054911, 2005.
[28] Jr-Shiang Shiau, Sanjaya Brahma, Chuan-Pu Liu, and Jow-Lay Huang. Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering, Thin Solid Films, 620, 170-174, 2016.
[29] Subrina Rafique, Lu Han, and Hongping Zhao. Thermal annealing effect on β-Ga2O3 thin film solar blind photodetector heteroepitaxially grown on sapphire substrate, Physica Status Solidi A-Applications and Materials Science, 214(8), 1700063, 2019.
[30] Yu Xu, Zhiyuan An, Lixin Zhang, Qian Feng, Jincheng Zhang, Chunfu Zhang, and Yue Hao. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method, Optical Materials Express, 8(9), 2941-2947, 2018.
[31] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang. Individual β-Ga2O3 nanowires as solar-blind photodetectors, Applied Physics Letters, 88(15), 153107, 2006.
[32] Yuehua An, Xulong Chu, Yuanqi Huang, Yusong Zhi, Daoyou Guo, Peigang Li, Zhenping Wu, and Weihua Tang. Au plasmon enhanced high performance β-Ga2O3 solar-blind photodetector, Progress in Natural Science-Materials International, 26(1), 65-68, 2016.
[33] Jiang Wang, Lijuan Ye, Xia Wang, Hong Zhang, Li Li, Chunyang Kong, and Wanjun Li. High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector, Journal of Alloys and Compounds, 803, 9-15, 2019.
[34] Do Kyu Lee, Sung Kim, Min Choul Kim, Sung Hwan Eom, Hyoung Taek Oh and Suk-Ho Choi. Annealing Effect on the Electrical and the Optical Characteristics of Undoped ZnO Thin Films Grown on Si Substrates by RF Magnetron Sputtering, Journal of the Korean Physical Society, 51(4), 1378-1382, 2007.
[35] Peng Gu, Xinghua Zhu, and Dingyu Yang. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films, Applied Physics A-Materials Science and Processing, 125(1), 50, 2019.
[36] Kalyani Nadarajah, Ching Yern Chee, and Chou Yong Tan. Influence of Annealing on Properties of Spray Deposited ZnO Thin Films, Journal of Nanomaterials, 2013, 146382, 2013.
[37] Yu-Lin Gao, Yi-Jun Lu, Jian-Sheng Zheng, Zhi-Gang Cai, Hai-Yu Sang, and Xue-Ran Zeng. Time-resolved photoluminescence study of Ga0.52In0.48P alloys, European Physical Journal B, 28(2), 145-148, 2002.
[38] Maddaka Reddeppa, Byung-Guon Park, Sutripto Majumder, Young Heon Kim, Jae-Eung Oh, Song-Gang Kim, Dojin Kim, and Moon-Deock Kim. Hydrogen passivation: a proficient strategy to enhance the optical and photoelectrochemical performance of InGaN/GaN single-quantum-well nanorods, Nanotechnology, 31(47), 475201, 2020.
[39] Antonella Sciuto, Fabrizio Roccaforte, Salvatore Di Franco, and Vito Raineri. Schottky barrier lowering in 4H-SiC Schottky UV detector, Materials Science Forum, 600-603, 1215-1218, 2009.
[40] Ye Fan, Yingqiu Zhou, Xiaochen Wang, Haijie Tan, Youmin Rong, and Jamie H. Warner. Photoinduced Schottky Barrier Lowering in 2D Monolayer WS2 Photodetectors, Advanced Optical Materials, 4(10), 1573-1581, 2016.
[41] Hsin-Ying Lee, Ming-Yi Wang, Kuo-Jen Chang, and Wen-Jen Lin. Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering, IEEE Photonics Technology Letters, 20(21-24), 2108-2110, 2008.
[42] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell. Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors, Applied Physics Letters, 72(5), 542-544, 1998.
[43] Jordan R. Nicholls, Sima Dimitrijev, Philip Tanner, and Jisheng Han. The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes, IEEE Transactions on Electron Devices, 66(4), 1675-1680, 2019.
[44] Stephan Lany and Alex Zunger. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors, Physical Review B, 72(3), 035215, 2005.
[45] Yaonan Hou, Zengxia Mei, Huili Liang, Daqian Ye, Changzhi Gu, Xiaolong Du, and Yicheng Lu. Annealing Effects of Ti/Au Contact on n-MgZnO/p-Si Ultraviolet-B Photodetectors, IEEE Transactions on Electron Devices, 60(10), 3474-3477, 2013.
[46] Dinesh Thapa, Jesse Huso, Jeffrey Lapp, Negar Rajabi, John L. Morrison, Matthew D. McCluskey, and Leah Bergman. Thermal stability of ultra-wide-bandgap MgZnO alloys with wurtzite structure, Journal of Materials Science: Materials in Electronics, 29(19), 16782-16790, 2018.
[47] Yusuke Ogawa and Shinobu Fujihara. Band-gap modification and tunable blue luminescence of wurtzite MgxZn1–xO thin films, Physica Status Solidi A- Applications and Materials Science, 202(9), 1825-1828, 2005.
[48] Bixia Lin, Zhuxi Fu, and Yunbo Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, 79(7), 943-945, 2001.
[49] Z. G. Ju, C. X. Shan, C. L. Yang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method, Applied Physics Letters, 94(10), 101902, 2009.
[50] Ekaterine Chikoidze, Corinne Sartel, Hagar Mohamed, Ismail Madaci, Tamar Tchelidze, Mircea Modreanu, Pablo Vales-Castro, Carles Rubio, Christophe Arnold, Vincent Sallet, Yves Dumont, and Amador Perez-Tomas. Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor, Journal of Materials Chemistry C, 7(33), 10231-10239, 2019.
[51] Jun Wang, Qianwen Ran, Xunhu Xu, Binghua Zhu, and Wenjuan Zhang. Preparation and Optical Properties of TiO2-SiO2 thin films by Sol-gel Dipping Method, IOP Conference Series: Earth and Environmental Science, 310, 042029, 2019.
[52] Ruchi Nandanwar, Purnima Singh, and Fozia Z. Haque. Synthesis and Characterization of SiO2 Nanoparticles by Sol-Gel Process and Its Degradation of Methylene Blue, American Chemical Science Journal, 5(1), 1-10, 2015.
[53] Meng Zhang, Zhi Chen, Juntong Huang, Saifang Huang, Zhihui Hu, Zhijun Feng, Qingming Xiong, and Xibao Li. ꞵ-Si3N4 Microcrystals Prepared by Carbothermal Reduction-Nitridation of Quartz, Materials, 12(21), 3622, 2019.
[54] Kun-Cheng Peng, Hao-Che Kao, Shiu-Jen Liu, Kuei-Lan Tsai, and Jing-Chie Lin. Annealing Effect on the Microstructure and Optical Characterization of Zn2SiO4 Thin Film Sputtered on Quartz Glass, Japanese Journal of Applied Physics, 52(11), 11NB04, 2013.