簡易檢索 / 詳目顯示

研究生: 紀冠銘
Chi, Kuan-Ming
論文名稱: 不確定系統之H∞-量化迴授管限追蹤控制設計
The H∞ -QFT Sphere-tracking Control Design for uncertain Systems
指導教授: 黃正能
Hwang, Cheng-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: H∞-量化迴授管限追蹤領先落後、伺服補償器
外文關鍵詞: H∞-QFT, Sphere tracking, lag-lead, servo compensator
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分具有物理意義的系統都含不確定性因素,諸如在建構數學模型時,便是一個不確定性生成;這些未知不確定性,像系統參數變動或系統結構改變的不確定性(uncertainties),可能會因為環境因素導致系統性能變差,在更糟糕的情況下,可能造成閉迴路系統不穩定。
    本文考慮一個有界但具有不確定性之參考輸入,而受控系統為含參數不確定之系統,結合H∞和量化迴授理論(Quantitative Feedback Theory,QFT)來確保在不確定系統的干擾下,系統輸出誤差可控制在預設的管限範圍之內。為了匹配所需的規格,由落後領先補償器 、及伺服補償器 進行設計,再經由 控制器選擇權重函數 、 、 的迴路整型方法,壓低系統受到外在干擾及系統內部不確定性之影響,再搭配量化迴授理論(Quantitative Feedback Theory,QFT),使系統輸出在受到不確定性影響下,還能夠達到預定之管限追蹤性能。
    最後,本研究以一個高度參數不確定之系統和水下無人載具系統為例子,做為電腦模擬對象,以驗證所推導之H∞ -QFT管限追蹤控制器之性能,電腦模擬結果顯示此控制器除能保證不確定性系統之暫態響應能達到預設的性能規範之外,並能有效降低系統不確定參考輸入及外在干擾的影響。

    Most mathematical model of physical system contains various uncertainties, which may be presented in the form of system parameter variation. These uncertainties may make the closed-loop system unstable or result in poor system performance. In this study, an uncertain system containing bounded parameter variation with a sphere-bounded reference input is considered. The composite design methodology of the -control and the Quantitative Feedback Theory is then proposed in this research for the above system to ensure that the system output is bounded in the pre-specified sphere, which matches the desired performance. To match the desired specifications, three weighting matrices 、 、 and a lag-lead compensator that contains servo mechanism are added to the augmented plant so that the proposed controller is able to minimize the norm of the matrix between the exogenous inputs and the controller outputs to reduce the ill-effects caused by disturbances and plant uncertainties on the tracking errors and the control energy while the desired system performance can be guaranteed by examining the Nichols chart through the QFT process. Finally a physical system of an underwater vehicle is used as an example to demonstrate the feasibility of the proposed control structure.

    中文摘要 I ABSTRATE II 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3文章架構 3 第二章 H∞控制系統 5 2.1 H∞理論 5 2.2範數(NORM)及奇異值(SINGULAR VALUE) 5 2.3迴路函數整型 10 2.4擴增系統矩陣 15 2.5狀態回授控制器 18 2.5.1狀態空間法 19 2.5.2 變異漸進法(Variational Approach)理論 22 2.6 H∞控制之設計流程 25 第三章 量化迴授及管限理論 26 3.1量化迴授理論 26 3.2規格轉換問題 27 3.3 QFT設計流程 33 3.4管限理論 41 第四章 結合H∞-QFT設計方法 45 4.1前言 45 4.2控制器設計 46 4.2.1補償器設計 48 4.2.2 權重函數選取 52 4.2.3 不確定性系統描述 61 4.3 理論A 67 4.4 理論B 71 第五章 電腦模擬 73 5.1模擬1 73 5.2 水下無人載具模擬 98 第六章 結論 118 參考文獻 119

    [1]Anthony J. ,David Lienard, “Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles”,IEEE Journal of Oceanic Engineering ,Vol.18,No.3,pp327-339,1993.
    [2]Bruce A. Francis, “Lecture Notes in Control and Information Sciences - A Course in H Control Theory”, Springer-Verlag, 1987.
    [3]Callier, F.M., and C.A. Desoer, “Multivariable feedback systems” Dowden & Culver,1982.
    [4]Constantine H.Houpis ,Steven J.Rasmussen ,Mario Garcia-Sanz.Houpis.”Quantitative feedback theory:fundamentals and applications”Boca Raton:CRC Taylor & Francis,2006.
    [5]Cheng-Neng Hwang,”Controller synthesis for input output tracking in lure type uncertain nonlinear systems”May 1990
    [6]Cheng-Neng Hwang,”Formulation of H2 and H∞ Optimal control problem-a variational approach”,Journal of the Chinese Institute of Engineerings,Vol.19,No.6,pp853-866,1993
    [7]Cheng-Neng Hwang,”A variation approach to H2 and H∞control problem for linear nonautonomous system”Proc.Natil.Sci.Counc.Roc(A),Vol.19,No.5,pp.408-422,1995
    [8] Craig Borghesani,Yossi Chait,Oded Yaniv.“The QFT Frequency Domain Control Design Toolbox For Use with MATLAB”, Terasoft, Inc., 2001.
    [9] Chih-Liang Chen,” Multibody Modeling and Robust Double-loop PID Tilting Motion Controller Design by Using QFT/H∞Theorem for a Diamond-shaped Narrow Tilting Vehicle” University,Institute of Electrical control engineering,2008
    [10] Changwei Yang and Jinwen An,“QFT/H∞robust mixed sensitivity control of command tracking system for space vehicle,” Second International Conference on Space Information Technology, Proceedings of the SPIE, Vol. 6795, 2007, pp. 67956T
    [11] Castano,F.Jimenez,D. Rubio, F.R. “A Combined QFT/H∞ Control of a Rotary Dryer” Decision and Control, 2003. Proceedings. 42nd IEEE Conference ,2003 Vol.6 pp5909 - 5914
    [12] Doyle,John Comstock, and Gunter Stein, “Multivariable feedback design: concepts for a classical/modern synthesis,” IEEE Trans. Autom. Control, vol.AC-26, pp. 4-16,1981.
    [13] Doyle,John,”State-space Solution to Standard H2 and H∞control problem”IEEE Transactions On Automatic Control,Vol.34,No.8,August 1989
    [14] Doyle,John Comstock,Bruce Francis and Allen Tannenbaum,”Feedback control theory” Macmillan Publishing Company ,1992.
    [15] Dapeng Wang,Fengxiang Wang and Haoran Bai,”Design and performance of QFT/H∞controller for magnetic bearing of high-speed motors ”2009
    [16] Horowitz, I.M., "Optimum Linear Adaptive Design of Dominate-Type Systems with Large Parameter Variations," IEEE Transactions on Automatic Control, Vol.AC-14, No.3, pp.261-269, 1969.
    [17] Horowitz, I.M., "Synthesis of Feedback Systems with Nonlinear Time-Varying Uncertain Plants to Satisfy Quantitative Performance Specifications," IEEE Proceedings, Vol.64, No.1, pp.123-130, 1976.
    [18] Kemin Zhou,John C.Doyle,Keith Glover,“Robust and optimal control”Prentice hall upper saddle river new Jersey 07458
    [19] Lin, Bao-Tung,” QFT/H∞Controller Deign of an MIMO Suspension System”National Chiao Tung University,Institute of Electrical control engineering,2010
    [20] Marcel Sidi, “A combined QFT/H∞ design technique for TDOF uncertain feedback systems” International Journal of control,2002, vol.75,No.7,475-489
    [21] Richard C.Dorf,Robert H.Bishop,”Modern control systems”eleventh edition
    [22] S. S. Nudehi and U. Farooq,“Hybrid QFT/H∞for control of nonlinear systems: An example of position control of a Pendulum,” 2007 American Control Conference, 2007, pp. 2793-2798.
    [23] Y. Kouhi, B. Labibi, A. Fatehi, and R. Adlgostar, “H∞and QFT Robust Control Designs for Level Control Plant” India Conference, 2008. Annual IEEE

    [24] Zames, G.,“On H∞Optimal Sensitivity Theory for SISO Feedback Systems” IEEE Transactions on Automatic Control, Vol.AC-29, No.1, pp.9-16, 1984.
    [25] 楊憲東、葉芳柏,”線性與非線性H∞控制理論”,全華科技圖書股份有限公司,1997。
    [26] 詹國琴,”非線性系統之H∞控制器設計及迴路整型”,國立成功大學造船暨船舶機械工程研究所碩士論文,1999。
    [27] 蕭夙君, “應用QFT設計Smith Predictor”國立中正大學化學工程研究所程研究所碩士論文,2001。
    [28] 張正道, “非線性系統管限追蹤H∞控制器之設計研究”國立成功大學系統與船舶機械工程研究所碩士論文,2006。

    無法下載圖示 校內:2018-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE