簡易檢索 / 詳目顯示

研究生: 林明璋
Lin, Ming-Chung
論文名稱: 矩形鰭片於空腔熱壁上之自然對流換熱特性的研究
Study on Natural Convection Heat Transfer Characteristics of Rectangular Fins on Hot Wall of Cavity
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 逆算法水平鰭片封閉空腔自然對流鰭片位置CFD
外文關鍵詞: CFD, Inverse method, Vertical plate heat sink, Cavity, 3D Natural convection, Horizontal Fin
相關次數: 點閱:85下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限差分法、最小平方法之逆算法搭配實驗溫度量測值來估算水平鰭片置於封閉空腔內之熱傳係數,並以CFD探討鰭片間之空氣溫度與流場速度分佈情形。由於鰭片上的熱傳係數並非均勻分佈,故於進行反算前,須將鰭片分割為N個小區域,而後把熱電偶安裝於小區域上以量測不同條件下之量測位置的溫度。再以商用軟體FLUENT搭配各種流動模式及適當格點數目求取各量測點之鰭片溫度、鰭片上之熱傳係數。除此之外,在相同條件下由各種流動模式所求得之數值結果將相互比較,以探討其差異性。為求得本研究較正確之熱傳及流體流動特性,選用適當的流動模式及網格格點數所求得之鰭片熱傳係數,須盡可能接近實驗溫度量測值及逆算結果。結果顯示,流動模式及網格點數目對數值結果之影響不容忽視,實驗方面將水平鰭片置於封閉空腔中,探討鰭片間距和鰭片長度的變化所造成的影響,並研究不同鰭片位置之散熱差異。結果顯示鰭片上的平均熱傳係數會隨鰭片間距的增加而提高且隨著鰭片長度的增加而減少。此外不同位置的鰭片亦會隨著這些變化有所不同。為了驗證所得結果之可靠性及可用性,將所求得熱傳係數之逆算結果將與先前結果或其他相關文獻之經驗式相比較,且依現有的實驗數據改良經驗公式。

    In this paper, finite difference method, least square method and inverse method combined with experimental temperature data are used to estimate the heat transfer coefficient and the heat dissipating capacity of the plate-fin heat sinks which is placed vertically. Furthermore, CFD is used to discuss the air temperature and the flow field speed between the heat sinks. Due to the heat transfer coefficient of the plate-fin heat sinks is not uniform, so the plate-fin is required to divide into several regions. After that, install thermocouples on each small region, and measure the temperature of these places. Besides, any kinds of the various models will be compared with the numerical results on the same condition for find out the differences. To obtain correct heat transfer and fluid flow characteristics of plate-fin heat sinks, choose appropriate flow model and number of grid points is very important. The results indicate that the flow model and the number of grid points have a great influence on the numerical analysis. From the experiment point of view, the average heat-transfer coefficient will increase as the fin space increase but will decrease as the fin length increase. Besides, it will be significant affection with the different location in the cavity. In terms of the heat transfer coefficient, different fin locations have differnet heat dissipating capacity. In order to verify the reliability of predicted results of this paper, the present study also in comparison with the empirical correlations of other relevant literature.

    摘要 I 誌 謝 VI 表目錄 X 圖目錄 XII 符號說明 XIV 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的 9 1-4 研究重點與論文架構 10 第2章 逆算法理論分析 12 2-1 簡介 12 2-2 建立數學模型 13 2-3 鰭片上之逆向方法 14 第3章 實驗方法 20 3-1 簡介 20 3-2 實驗設備 21 3-2-1 實驗試件 21 3-2-2 封閉空腔 22 3-2-3 溫度擷取系統 22 3-3 實驗組別 23 3-4 實驗步驟 23 第4章 數值方法 29 4-1 簡介 29 4-2 假設條件 30 4-3 流動模式 30 4-4 邊界條件 35 4-5 數值求解 37 4-5-1 流動模式的選定 39 4-5-2 網格測試 41 第5章 結果與討論 54 5-1 實驗結果與分析 54 5-1-1 鰭片間距對所求得結果之影響 55 5-1-2 鰭片長度對所求得結果之影響 57 5-1-3 鰭片位置之結果比較 58 5-1-4 相關文獻之比較 60 5-1-5 依據實驗數據所做經驗公式之修正 62 5-2 數值結果與分析 64 5-2-1 反算法與模擬結果之比較 64 5-2-2 鰭片間距對所求得結果之影響 65 5-2-3 鰭片長度對所求得結果之影響 67 5-2-4 鰭片位置之結果比較 68 第6章 綜合結論與未來展望 109 6-1 綜合結論 109 6-2 未來發展與建議 111 參考文獻 112

    [1] X. Shi, J.M. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall, J. Heat Transfer 125 (2003) 624e634.
    [2] E. Bilgen, Natural convection in cavities with a thin fin on the hot wall, Int. J. Heat Mass Transfer 48 (2005) 3493-3505.
    [3] R.L. Frederick, S.G. Moraga, Three-dimensional natural convection in finned cubical enclosure, Int. J. Heat Fluid Flow 28 (2007) 289-298.
    [4] F. Xu, J.C. Patterson, C. Lei, An experimental study of the unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity, Int. J. Heat Fluid Flow 29 (2008) 1139-1153.
    [5] F. Xu, J.C. Patterson, C. Lei, Transition to a periodic flow induced by a thin fin on the sidewall of a differentially heated cavity, Int. J. Heat Mass Transfer 52 (2009) 620-628.
    [6] F. Xu, J.C. Patterson, C. Lei, Transient natural convection flows around a thin fin on the sidewall of a differentially heated cavity, J. Fluid Mech. 639 (2009) 261-290.
    [7] Y. Liu, C. Lei, J.C. Patterson, Natural convection in a differentially heated cavity with two horizontal adiabatic fins on the sidewalls, Int. J. Heat Mass Transfer 72 (2014) 23-36.
    [8] F. Xu, J.C. Patterson, C. Lei, The effect of the fin length on the transition of the natural convection flows in a differentially heated cavity, Int. J. Therm. Sci. 70 (2013) 92–101.

    [9] F. Xu, S. Saha, Transition to an unsteady flow induced by a fin on the sidewall of a differentially heated air-filled square cavity and heat transfer, Int. J. Heat Mass Transfer 71 (2014) 236–244.
    [10] Y. Liu, C. Lei, J.C. Patterson, Plume separation from an adiabatic horizontal thin fin placed at different heights on the sidewall of a differentially heated cavity, Int. Commun. Heat Mass Transfer 61 (2015) 162–169.
    [11] A. Elatar, M.A. Teamah, M.A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin, Int. J. Therm. Sci. 99 (2016) 41-51.
    [12] J. Ma, F. Xu, Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers Applied Thermal Engineering 99 (2016) 625–634.
    [13] J. Ravnik, L. Škerget, Z. Žunič, Velocity-vorticity formulation for 3D natural convection in an inclined enclosure by BEM, Int. J. Heat Mass Transfer 51 (2008) 4517–4527
    [14] Han-Taw Chen, Ming-Chung Lin,Jiang-RenChang, Numericaland experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. Int. J. Heat Mass Transfer, vol. 124, pp. 1217-1229, 2018.
    [15] D. R. Haper, W. B. Brown, Mathematical equations for heat conduction in the fins of air cooled engines, N. A. C. A. Rept, pp. 158, 1922.
    [16] F. G. Hewitt, Heat Exchanger Design Handbook, Begell House, Inc., pp. 3340, 1998.
    [17] J. R. Bodoia, J. F. Osterle, The Development of free convection between heated vertical plates, ASME J.Heat Transfer, Vol. 84, pp. 40-43, 1962.
    [18] J. Deans, J. Neale, The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, Heat Transfer Eng., Vol. 27, pp. 56-67, 2006.
    [19] A. de Lieto Vollaro, S. Grignaffini, F. Gugliermetti, Optimum design of vertical rectangular fin arrays, Int. J. Therm. Sci., vol. 38, pp.525-529, 1999
    [20] F. Harahap, H. Lesmana, I. K. T. Arya Sume Dirgayasa, Measurements of heat dissipation from miniaturized vertical rectangular fin arrays under dominant natural convection conditions, Heat Mass Transfer, vol. 42, pp.1025-1036, 2006.
    [21] K. E. Starner, H. N. McManus, An experimental investigation of free-convection heat transfer from rectangular fin arrays,” ASME J. Heat Transfer, Vol. 85, pp. 273-277, 1963.
    [22] C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger design: optimum uniform separation between rectangular fins protruding from a vertical rectangular base, Applied Energy, vol. 19, pp. 287-299, 1985.
    [23] H. sato and k. kishinami, Temperature distribution and heat transfer from distributed heat sources mold in a vertical plate set in still air, Int. Symp. on Transport Phenomena in Thermal Control Taipei Aug., pp. 14-18, 1988.
    [24] I. Tari, M. Mehrtash, Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks, J. Appl. Therm. Eng., vol. 61, pp. 728-736, 2013.
    [25] N.C. Markatos, K.A. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transfer, vol. 27, pp. 755-772, 1984

    [26] A. Güvenç,H. Yüncü, An experimental investigation on performance of fins on a horizontal base in free convection heat transfer, Heat Mass Transfer vol. 37, pp. 409-416, 2001.
    [27] B. Yazicioğlu,H. Yüncü, Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer, Heat Mass Transfer vol. 44, pp. 11-21, 2007.
    [28] Jnana Ranjan Senapati,Sukanta Kumar Dash, Subhransu Roy, Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins,International Journal of Thermal Sciences vol.111,pp146-159,2017.
    [29] S.A. Nada, Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, Int. J. Heat Mass Transfer, vol. 50, pp. 667-679, 2007.
    [30] E. M. Sparrow, A. Haji-Sheikh, T. S. Lundgren, The inverse problem in transient heat conduction, J. Appl. Mech., Vol.31, pp. 369-375, 1964.
    [31] N.M. Alnajem, M.N. Özişik, A direct analytical approach for solving linear inverse heat conduction problems, ASME J. Heat Transfer, vol 107, pp. 700-703, 1985.
    [32] J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, vol. 62, pp. 46-51, 1962.
    [33] J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering Design, vol. 7, pp. 170-178, 1968.
    [34] J.V. Beck, B. Litkouhi, C.R. Stclair, Efficient sequential solution of nonlinear inverse heat-conduction problem, Numer. Heat Transfer, vol. 5, pp. 275-286, 1982.
    [35] S. Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution, Int. J. Heat Mass Transfer, vol. 31, pp. 127-135, 1996.
    [36] E. Velayati, M. Yaghoubi, Numerical study of convection heat transfer from an arrays of parallel bluff plates, Int. J. Heat Fluid Flow, vol. 26, pp. 80-91, 2005.
    [37] H.T. Chen, Y.S, Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer 100 (2016) 320-331.
    [38] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 378-392.
    [39] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Effect of domain boundary set on natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 668-682.
    [40] H.T. Chen, H.C. Tseng, S.W. Jhu, J.R. Chang, Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks, Int. J. Heat Mass Transfer 111 (2017) 1050-1062.
    [41] H.T. Chen, Y.L. Chang, P.Y. Lin, Y.J. Chui, and J.R. Chang, Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters, Int. J. Heat Mass Transfer 118 (2018) 931-947.
    [42] H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer 49 (2006) 3034-3044.
    [43] H.T. Chen, W.L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transfer 50 (2007) 1750-1761
    [44] M. N. Özişik, H. R. B. Orlande, Inverse heat transfer: Fundamentals and applications, Taylor & Francis, New York, 2000.
    [45] O. M. Alifanov, Inverse heat transfer problem, Springer-Verlag, Berlin , 1994.
    [46] J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse heat conduction: ill-posed problems, Wiley Interscience, New York, 1985.
    [47] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, V. H. Winston & Sons, Washington, DC, 1977.
    [48] V. S. Arpaci, Introduction to Heat Transfer, Prentice Hall, New Jersey, pp. 580, 1999.
    [49] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., New York, pp. 53-62, 1993.
    [50] B.E. Launder, D. Spalding, The numerical computation of turbulent flows, Comp. Meth. Appl. Mech. Engng., vol. 3, pp. 269-289, 1974.
    [51] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp 1510-1520, 1992.
    [52] F.P. Incropera, D.P. Dewitt, Introduction to Heat Transfer, 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.

    下載圖示 校內:2022-07-31公開
    校外:2022-07-31公開
    QR CODE