簡易檢索 / 詳目顯示

研究生: 卓世明
Cho, Shih-ming
論文名稱: 石蠟燃料混合火箭之性能測試
Experimental Study on a Hybrid Rocket Burning with Paraffin-Based Fuels
指導教授: 李聰盛
Lee, Tsung-sheng
邱輝煌
Chiu, Hui-huang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 內彈道性能分析燃料退縮率石蠟基燃料混合火箭
外文關鍵詞: fuel regression rate, hybrid rocket, internal ballistics analysis, paraffin-based fuel
相關次數: 點閱:129下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混合火箭結合了固態火箭以及液態火箭的優點,具有安全性高、可靠度佳、價格便宜、推力之可控制性以及對環境影響較低等特性,然而因傳統混合火箭較低燃料退縮率致使其性能不易提升,限制其使用範圍。本研究利用以石蠟混合HTPB方式以改進石蠟燃料受熱後強度問題,並以漩渦進氧以提高氧化劑/燃料蒸氣混合機制,探討石蠟基燃料退縮率及燃燒效率等特性。實驗中依重量百分製作100P(純石蠟)、90P(90%石蠟+10% HTPB)、70P及50P等燃料,高石蠟含量燃料如90P受熱後藥柱強度即明顯不足,70P燃料則在較高氧氣通量時,其燃燒室壓力出現振盪,且有部份熔融燃料隨噴焰噴出。至於50P燃料藥柱受熱後仍可維持一定強度,對石墨噴嘴燒蝕現象較為趨緩,其燃料退縮率在漩渦進氣條件下可表示r=0.026GOx^0.8076,在GOx=150Kg/m^2-sec時,其燃料退縮率較傳統混合火箭HTPB/GO2 增加61% ,此種50P之石蠟基燃料可同時滿足提升燃料退縮率及降低噴嘴燒蝕等研究目標。檢測試驗後藥柱燃面,發現在燃料蒸氣與氧氣混合機制較差之燃燒情況下,藥柱通道出口處燃料退縮率急遽上升,顯示部份未能於燃燒室反應之混合燃氣繼續於後混室燃燒。因此,對於混合機制較為不足系統後混室為必需的裝置。研究中亦根據燃燒室壓力及推力量測數據及燃料之特徵排放速度C*,並利用質量守恆原理,推估混合火箭燃燒過程中燃料退縮率、氧化劑通量、比衝值、氧化劑/燃料比 (O/F)、推力係數等內彈道性能變化,藉以了解混合火箭複雜燃燒行為,進而設計高性能混合火箭滿足下世代任務需求。經質量守恆之內彈道性能分析,可於一次實驗數據中獲得大量燃料退縮率與氧氣通量關係,此關係式尤適用在與實驗平均氧氣通量接近範圍。此質量守恆分析方法,可提供作為預估燃料退縮率之有效方法。

    The hybrid rocket has the superiority of safety, low-cost and high-reliability over solid-propellant and liquid-propellant rockets. Classical hybrids, however have suffered from slow fuel regression rates and relatively poor combustion efficiency. Effects of fuel composition and swirling oxidizer injection on the fuel regression rates were investigated. Various weight ratios of paraffin wax and HTPB mixtures including 90P (90% paraffin + 10% HTPB), 70P and 50P were developed. Grain strength was dropped significantly as test motor was ignited for the fuel of 90P. 70P fuel could be maintained stable combustions under most test conditions except at higher oxygen flux test in which pressure fluctuations was observed, and part of fuel vapor was blow with exhaust flame. With swirling GOx injection, 50P fuel has shown high regression rate and grain strength properties.Variation of regression rate with gaseous oxygen could be expressed as r=0.026GOx^0.8076, which is about 61% increased as compared with classical HTPB/GO2 hybrid rocket at GOx=150Kg/m^2-sec . Moreover, 50P fuel motor could also be operated at fuel rich combustion condition that would reduce graphic nozzle erosion effect. The post test grain contour was employed to estimate regression rate distribution along axial direction. A rapid increased regression rate near port end was observed in lower mixing conditions that were caused by low oxygen mass flux. It indicated that fuel vapor and oxidizer mixture gas was unable to mix well and react completely inside the combustor and part of the combustible gas was therefore, burnt continuously in the aft-mixing chamber. Aft-mixing chamber was necessary for the system lacking of strong mixing mechanism. With the measured chamber pressure and oxygen mass flow rate and the calculated fuel characteristic velocity C*, histories of the spatially averaged of regression rate, oxygen mass flux, oxidizer/fuel ratio, and thrust coefficient were obtained by employing mass conservation law. Due to the variation of port diameter, wide range of oxygen mass flux and regression rate could be obtained during single test. This analysis has proven as an effective way to estimate fuel regression rate. Analysis on combustion history inside a motor will probably provide as a guideline for designing a high performance hybrid rocket.

    中文摘要 I ABSTRACT III 目錄 VI 表目錄 X 圖目錄 XI 符號說明 XV 第一章 導論 1 1-1前言 1 1-1-1混合式推進系統特性 1 1-1-2混合式推進系統之演進 4 1-2文獻回顧 7 1-2-1改進固體燃料配方 7 1-2-2增加氧化劑及燃料蒸氣混合機制 8 1-2-3國內之相關研究 9 1-3研究動機與目的 11 第二章 混合火箭燃燒特性與藥柱製作 14 2-1混合火箭燃料 14 2-1-1 HTPB(Hydroxyl Terminated Polybutaduene) 14 2-1-2石蠟燃料(Paraffin) 16 2-2 混合火箭氧化劑 18 2-3混合火箭燃燒特性 19 2-4影響燃料退縮率機制 21 2-5燃料藥柱製作及性質 22 第三章 測試發動機與實驗設備 25 3-1 藥柱製作設備 25 3-2 實驗設備 26 3-2-1 氣源供應 27 3-2-2測試發動機 28 3-2-3 推力台架 31 3-2-4 實驗之控制 31 3-2-5數據量測及影像擷取 32 3-3 數據分析設備 36 第四章 實驗程序與數據分析方法 37 4-1 試驗前之準備工作: 37 4-1-1壓力、推力感測器校正 37 4-1-2氧化劑流量調整 38 4-1-3點火氧氣及丙烷供應量調整 38 4-2 實驗程序 38 4-3數據分析方法 40 4-3-1混合火箭性能參數 40 4-3-2內彈道性能變化分析 44 第五章 結果與討論 47 5-1 實驗參數設定 47 5-2 HTPB以及純石蠟燃料之燃燒特性 48 5-3 HTPB含石蠟基燃料之燃燒特性 50 5-3-1 50P(50%石蠟+50%HTPB)燃料之燃燒特性 51 5-3-2 70P燃料之燃燒特性 51 5-3-3 90P燃料之燃燒特性 52 5-3-4 燃燒特性綜整 53 5-3-4-1氣燃比及比衝值 53 5-3-4-2燃料退縮率 54 5-3-5 燃料配方擇優選擇 56 5-4 藥柱幾何形狀之影響 56 5-4-1 藥柱長度 56 5-4-2 藥柱通道 57 5-5 混合火箭內彈道性能分析 58 5-5-1實驗編號96053104實例分析 58 5-5-2氧氣通量及燃料組成對混合火箭燃燒過程影響 59 5-5-3燃料退縮率變化歷史 60 第六章 結論 62 第七章 未來工作 65 參考文獻 68 附錄表 75 附錄圖 81 自述 110 著作權聲明 111

    1.Sutton, G.P., Rocket Propulsion Elements, 6th edition, ISBN 0-471- 52938-9, 1992.

    2.http://www.scaled.com

    3.Boardman, T. A., Carpenter, R. L., Goldberg, B. E., and Shaeffer, C. W., “Development and Testing of 11 and 24-inch Hybrid Motors Under the Joint Government/ Industry IR&D Program,” AIAA Paper 93-2552, 1993.

    4.http://archives.cnn.com/2002/TECH/space/12/26/test.rocket/

    5.http://www.hypertekhybrids.com/mainpage.html

    6.Bettner, M., Humble, R. W., “Polyethylene and Hygrogen Peroxide Hybrid Testing at the United States Air Force Academy,” 1st International Hydrogen Peroxide propulsion Conference, The University of Surrey, UK, July 29-31, 1988

    7.Teague, M. W., Felix, T., Hudson, M. K.,and Shanks, R., “Application of Hydroxyl (OH) Radical Ultraviolet Absorption Spectroscopy to Rocket Plumes,” Journal of Pyrotechnics, Issue 16, Winter 2002, pp.71-75.

    8.http://www.hybrids.com/news.htm

    9.http://en.wikipedia.org/wiki/SpaceDev

    10.Heslouin, A., Simon, P., Lengell, G., Foucaud, R., Gibek, I. And Pillet, H. , “Propulsion of Microsattllites by Hybrid Rocket Engines,” 1st International Hydrogen Peroxide Propulsion Conference, The University of Surrey, UK.,July 29-31, 1988.

    11.A Moore, G. E., and Berman, K., “A Solid-Liquid Rocket Propellant System,” Jet Propulsion, Nov. 1956, pp.965-968.

    12.DeRose, M. E., Pfeil, K. L.,Carric, P. G., and Larson, C. W., “Tube Burner Studies of Cryogenic Solid Combustion,” AIAA Paper 97-3076, 1997.

    13.Clair, C. St., Rice, E., Knuth, W., and Gramer, D., “Advanced Cryogenic Solid Hybrid Engine Developments:Concept and Testing,” AIAA Paper 98-3508, 1998.

    14.Karabeyoglu, M. A., Altman, D., and Cantwell, B. J., “Combustion of Liquefying Hybrid Propellants: Part 1, General Theory,” Journal of Propulsion and Power, Vol. 18, No.3, May-June 2002, pp610-620.

    15.Karabeyoglu, M. A., Altman, D., and Cantwell, B. J., “Combustion of Liquefying Hybrid Propellants: Part 2, Stability of Liquid Films,” Journal of Propulsion and Power, Vol. 18, No.3, May-June 2002, pp621-630

    16.Yuasa, S., Shimada, O., Imamura, T., Tamura, T., and Yamamoto, K, “A Technique for Improving the Performance of Hybrid Rocket Engines,” AAIA paper 99-2322, 1990.

    17.Lee, T. S. and Potapkin, A., “The Performance of a Hybrid Rocket with Swirling GOx Injection,” Proceedings of International Conference on the Methods of Aerophysical Research", Part 1, Novosibirsk, Russia, pp.126-132, July 2002.

    18.Knuth, W. H., Chiaverini, M. J., Sauer, A., and Gramer, D.J.,“Solid Fuel Regression Rate Behavior of Vortex Hybrid Rocket Engines,” Journal of Propulsion and Power, Vol. 18, No.3, May-June 2002, pp.600-609.

    19.Carmicino, C., and Russo Sorge, A., “Influence of a Conical Axial Injector on Hybrid Rockets Performance,” Journal of Propulsion and Power, Vol. 22, No.5, September-October 2006, pp.984-995.

    20.Carmicino, C., and Russo Sorge, A., “Role of l Injection in Hybrid Rockets Regression Rate Behavior,” Journal of Propulsion and Power, Vol. 21, No.4, July-August 2005, pp.606-612.

    21.Lin, C.L. and Chiu, H.H.,“Numerical Analysis of Spray Combustion in Hybrid Rocket”, AIAA paper,95-2687,Joint Conf.,(1995).

    22.Chiu, H.H . and Lin, C.L.,“Performance Characteristics of Hybrid Rockets for Space Application”, Space Technology, Vol.16, No.1, pp.1-14, 1996.

    23.Lin, C.L., “Selected Problem on Interfacial Transport Phenomena in Two-Phase system”, Ph.D Thesis, IAA, NCKU, 1996.

    24.Tsai, H.L.,“Combustion and Aerodynamic Characteristics of Prevaporized Hybrid Rockets”, 50th International Astronautical Congress 4-8 Oct 1999/Amsterdam, The Netherlands.

    25.蔡照暉, “混合火箭的設計與性能分析,“國立成功大學航空太空工程研究所碩士論文(1998)。

    26.陳艮彥, “混合推進燃燒之正準理論-退縮率,結構及性能模式,” 國立成功大學航空太空工程研究所碩士論文(1999)。

    27.陳宏宜, “混合火箭燃燒系統之性能與設計分析,” 國立成功大學航空太空工程研究所碩士論文(2001)。

    28.邢禹成, 曹曾樹. 吳興國, “混合火箭固態燃料之退縮率熱傳,” 中華民國「燃燒學會/民航學會/航太學會」學術聯合會議, CI -117, March., 2001.

    29.Cheng, J.S, Chiu, H.H, Lee, T.S., Liu, H.C., and Char, J.M., “A Study of Curing and Burning Characteristics of HTPB Fuel”, The Second Taiwan-Canada Workshop on Aeronautics- Experimental and Analytical Methods in Aeronautical R&D, PICAST 4, pp.137-141, Kaohsiung, Taiwan, May 21-23, 2001.

    30.李聰盛,邱輝煌,賈澤民,“10公斤級推力混合火箭系統研製及測試”, CI-055,中華民國「民航學會/航太學會/燃燒學會」學術聯合會議, pp.359-366, March, 2002.

    31.Karabeyoglu, A., Zilliac, G, Cantwell, B. J., DeZilwa, S., and Castellucci, P., “Scale-Up Tests of High Regression Rate Paraffin -Based Hybrid Rocket Fuels,” Journal of Propulsion and Power, Vol. 20, No.6, November-December 2004, pp.1037-1045.

    32.Chiaverini, M. J., Harting, G. C., Lu, Y. C., Kuo, K. K., Peretz, A., Jones, S., Wygie. B., and Arves, J. P., “Pyrolysis Behavior of Hybrid Rocket Solid Fuels Under Rapid Heating Conditions,” Journal of Propulsion and Power, Vol. 15, No.6, 1999, pp. 888-895.

    33.Arisawa,H.and Brill,T.B.,“Flash Pyrolysis of Hydroxyl-Terminated Polybutadiene(HTPB),”,Combustion and Flame, 106 (1996) p.131-143.

    34.Bouck,L. S., Bear, A. D., and Ryan, N. W.,“Pyrolysis and Oxidation of Polymers at High Heating Rates,” Fourteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1973, pp.1165-1176.

    35.Chiaverini, M. J., Serin, N., Johnson, D. K., Lu, Y. C., Kuo, K. K., and Risha, G. A., “Thermal Pyrolysis and Combustion of HTPB-Based Sold Fuels for Hybrid Rocket Motor Application,” AIAA Paper 96-2845, 1996.

    36.Teague, M. W., Felix, T., Hudson, M. K.,and Shanks, R., “Application of Hydroxyl (OH) Radical Ultraviolet Absorption Spectroscopy to Rocket Plumes,” Journal of Pyrotechnics, Issue 16, Winter 2002, pp.71-75.

    37.http://news-service.stanford.edu/news/2003/november5/ rocketwax-115.html

    38.http://www.idavette.net/hib/nitrous.htm

    39.Stokes, P. R. Eur. Ing. ,”Hydrogen Peroxide for Power and Proplusion,” http://www.ee.surry.ac.hk/SSc/H2O2CONf/PStokes.htm

    40.George, P., Krishnan, S., Varkey, P. M., Ravindran, M., and Ramachangran, L., “Fuel Regression Rate Enhancement Studies in HTPB/GOx Hybrid Rocket Motors,” Journal of Propulsion and Power, Vol. 17, No.1, January-February, 2001, pp.35-42.

    41.A Moore, G. E., and Berman, K., “A Solid-Liquid Rocket Propellant System,” Jet Propulsion, Nov. 1956, pp.965-968.

    42.Stamatov, V., Honnery, D. R., and Soria, J., “Visualization of Flow Development in Hybrid Rockets Motors with High Regression Rates,” Journal of Propulsion and Power, Vol. 21, No.4, July-August 2005, pp.613-618.

    43.DeZilwa, S., Zilliac, G, Reinath, M.,and Karabeyoglu, A., "Time-Resolved Fuel-Grain Port Diameter Measurement in Hybrid Rockets,” Journal of Propulsion and Power, Vol. 20, No.4, July-August 2004, pp.684-689.

    44.Marxman, C. A., and Gilbert, M., “Turbulent Boundary Layer Combustion in the Hybrid Rocket,” 9th Internation Symposium on Combustion, Academic Press, Inc., New York, 1963, pp.371-383.

    45.Smoot, L. D., and Price, C. F., “Regression Rates of Nonmetalized Hybrid Fuel Systems,” AIAA Journal, Vol. 3, No. 8, August 1965, pp.1408-1413.

    46.Muzzy, R. J., “Applied Hybrid Combustion Theory,” AIAA Paper 72- 1143, 1972.

    47.Strand, L, Ray, R. and Anderson, F., “Hybrid Rocket Fuel Combustion and Regression Rate Study,” AIAA Paper 92-3302, 1992.

    48.Strand, L,Ray, R. and Anderson, F., “Hybrid Rocket Combustion Study,” AIAA Paper 93-2412, 1993.

    49.Kuo, K.K., Peretz, A., and Harting, G.C., “Heat Flux and Internal Ballistic Characterization of a Hybrid Rocket Motor Analog,” AIAA Paper 97-3080, 1997.

    50.George, P., Krishnan, S.,Varkey, P.M.,Ravindran, M and Ramachandran, L.,“Fuel Regression Rate in Hydroxyl -Terminated-Polybutadiene/Gaseous Oxygen Hybrid Rocket Motors," Journal of Propulsion and Power, Vol. 17, No.1, January-February 2001, pp.35-42.

    下載圖示 校內:立即公開
    校外:2007-08-08公開
    QR CODE