| 研究生: |
葉宜璁 Yeh, Yi-Tsung |
|---|---|
| 論文名稱: |
具檔板的鋸齒狀平面微流道中剪切稀化流體的混合 Mixing of shear-thinning fluids in a zigzag planar microchannels with baffles |
| 指導教授: |
吳志陽
Wu, C.Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 272 |
| 中文關鍵詞: | 微混合器 、剪切稀化流體 、鋸齒狀 、檔板 |
| 外文關鍵詞: | micromixer, shear thinning fluid, zigzag, baffles |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討剪切稀化流體在具有檔板的鋸齒狀微流道中的混合現象,所使用的剪切稀化流體為羧甲基纖維素水溶液,並採用冪次法則描述剪應力與剪應變率之關係。本研究以商用軟體CFD-ACE+模擬微流道混合器中的三維流動及混合現象,並探討轉彎間的距離、流量、流體的性質及檔板位置對混合效率的影響。實驗過程包含以光微影製程製作母模、用PDMS 翻模、再接合流道。在其中一入口之流體添加玫瑰紅螢光溶液;以雷射共軛焦顯微鏡取得流道中螢光溶液的濃度分佈影像,觀察玫瑰紅螢光溶液之濃度以檢視微流道混合器之混合情形,比較數值模擬與實驗結果,可知二者有足夠的一致性。本研究觀察到下列的現象:(1)在流道轉彎前加入檔板可有效的促進混合;(2)雷諾數越高,混合效率也越高;(3)改變轉彎間的距離可最佳化流體的混合效果;(4)剪切稀化流體與牛頓流體之差異隨雷諾數升高而變大。
In this work, we investigate the mixing behavior of shear-thinning fluids in a zigzag planar microchannel with baffles. The shear-thinning fluids considered in this work are the aqueous solution of Carboxymethyl Cellulose Sodium. The power-law has been employed for modelling the relation between shear stress and shear rate of the shear-thinning fluid. Then, we apply the commercial package, CFD-ACE+, to simulate the 3-D flow field and mixing behavior in the micromixer. Numerical simulation is performed for various distances between bends, flow rates, fluid properties and the positions of baffles to investigate the effects of these parameters on the mixing behavior in the micromixer. The fabrication process of the micromixer includes applying the photolithography method to fabricate SU-8 mold, replicating PDMS (polydimethysiloxane) mold and bonding the PDMS with a cover glass. Add Rhodamine B to one of the inlet fluids of the micromixer ; the fluid mixing is observed by a laser confocal spectral microscope, Leica TCS SP2. Reasonable agreement of simulation and experiment results is found for the cases considered. From the results of this work the following trends may be observed. (i) Adding buffles to the channel wall before bending enhances the mixing of fluids most significantly. (ii) As the Reynolds number increase, the mixing efficiency increases. (iii) An optimum distance between bends can be found for the mixing of fluids. (iv) The increase of the Reynolds number enlarges the discrepancy between shear-thinning fluid and Newtonian fluid.
1. A. Manz, N. Graber and H. M. Widmer, 1990. “Miniaturized total analysis systems: a novel concept for chemical sensing,” Sensor and Actuators, B: Chemical, Vol. 1, pp. 244-248.
2. V. Vivek, Y. Zeng and E. S. Kim, 2000. “Novel acoustic-wave micromixer,” The 13th Annual International Conference on Micro Electro Mechanical Systems, pp. 668-673.
3. Z. Yang, S. Matsumotoa, H. Goto, M. Matsumoto and R. Maeda, 2001. “Ultrasonic micromixer for microfluidic systems,” Sensor and Actuators, A: Physical, Vol. 93, pp. 266-272.
4. L. H. Lu, K. S. Ryu, C. Liu, 2001. “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanics systems, Vol. 11, pp. 462-469.
5. V. Mengeaud, J. Josserand, and H. H. Girault, 2002. “Mixing Processes in a Zigzag Microchannel: FiniteElement Simulations and Optical Study,” Analytical Chemistry, Vol. 74, pp.4279-4286.
6. M. Yi, H. H. Bau, 2003. “The kinematics of bend-induced mixing in micro-conduits,” International Journal of Heat and Fluid Flow, Vol. 24, pp.645-656.
7. 吳青峰, 2004. “渦流與注入流體位置對微型混合器效率之影響,” 國立成功大學機械工程研究所碩士論文.
8. F. Mnica, R. Paulo and S. Mendes, 1996. “Heat transfer to non-Newtonian fluids in laminar flow through rectangular ducts,” International Journal of Heat and Fluid Flow, Vol.17, pp.613-620.
9. J. A. Lima, and L. M. Pereira, 2000. “Hybrid solution for the laminar flow of power-law fluids inside rectangular ducts,” Computational Mechanics, Vol. 26, pp. 490-496.
10. J. P. Denier and P. P. Dabrowski, 2004. “On the boundary-layer equations for power-law fluids,” Physical and Engineer Sciences, Vol. 460, pp.3143-3158.
11. R. Manica and A. L. De Bortoli, 2004. “Simulation of sudden expansion flows for power-law fluids,” Journal of Non-Newtonian Fluid Mechanics, Vol. 121, pp.35-40.
12. C. Sarisamran and S. Devahastin, 2006. “Numerical simulation of flow and mixing behavior of small molecules from non-Newtonian fluids,” Chemical Engineering Science, Vol. 61, pp. 4484-4892.
13. K. L. Helton and P. Yager, 2007. “Interfacial instabilities affect microfluidic extraction of small molecules from non-Newtonian fluids,” Lab on a Chip, Vol. 7, pp.1581-1588.
14. 陳德翰, 2009. “具彎曲流道之微混合器中非牛頓流體的混合.” 國立成功大學機械工程研究所碩士論文.
15. P. James and M. Kostic, 1989. “Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts,” Advances in Heat transfer, Vol. 19, pp.248-356.
16. S. A. Rani, B. Pitts and P. S. Stewart, 2005. “Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrobial Agents and Chemotherpy, Vol. 49, pp. 728-732.
17. J. Boss, 1986. “Evaluation of the homogeneity degree of a mixture,” Bulk Solids Handling, Vol. 6, pp.1207-1215.