簡易檢索 / 詳目顯示

研究生: 黃文厚
Huang, Wen-Hou
論文名稱: 內生性大麻素透過神經醯胺引起內質網壓力以抑制順鉑抗藥性卵巢癌的細胞活性
Endocannabinoids suppress the viability of cisplatin-resistant ovarian cancer cells by ceramide-induced endoplasmic reticulum stress
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 50
中文關鍵詞: 抗藥性卵巢癌內生性大麻素內質網壓力神經醯胺
外文關鍵詞: chemoresistant ovarian cancer, endocannabinoids, ER stress, ceramide
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 卵巢癌是世上最致命的婦科惡性癌症之一。大多數婦女確診時已為晚期,而在給予手術和化學治療後常會復發,且復發的卵巢癌常伴隨著抗藥性。因此,找尋新的方法及組合來治療抗藥性的卵巢癌是迫切需要。來自哺乳類細胞以及植物之天然產物的內生性大麻素以及大麻素已被證明在不同腫瘤中具有抗腫瘤的潛力。然而,很少有研究探討內生性大麻素在卵巢癌中的作用機制。本研究提出了以下假設:內生性大麻素通過神經醯胺誘導的內質網壓力來抑制具抗藥性的卵巢癌的細胞活性。藉由細胞活性測試,發現隨著濃度的增加,內生性大麻素(AEA和2-AG)降低了卵巢癌細胞株(IGROV1和ES2)的細胞活性。藉由西方墨點法,我們發現內生性大麻素引起抗藥性卵巢癌明顯的內質網壓力並且活化了三個未摺疊蛋白反應途徑,最後增加了內質網引起細胞凋亡途徑中的關鍵蛋白CHOP的表現量。結合內生性大麻素的治療,可以讓抗藥性的卵巢癌細胞對於化療試劑之毒殺作用更為敏感。在免疫螢光染色的實驗,我們發現內生性大麻素所誘導的內質網壓力,伴隨著細胞中神經醯胺的累積。藉由抑制劑的實驗,我們發現內生性大麻素所引起的內質網壓力是透過增加細胞中神經醯胺的生合成。綜合本研究所有的實驗,利用內生性大麻素引起神經醯胺的累積以及過量的內質網壓力,可能為治療卵巢癌一種有效的選擇。

    Ovarian cancer is one of the most lethal gynecological malignancies worldwide. Most women present with late-stage disease, and develop recurrence after surgery and chemotherapy. Besides, almost all patients relapse with chemoresistant disease. Therefore, new approaches to treat chemoresistant ovarian cancer are urgently needed. (Endo)cannabinoids, natural products from mammalian cells and plants, have been demonstrated to have promising potential as antitumor agents in different types of tumors. However, few studies have investigated the mechanism of action of endocannabinoids in the treatment of ovarian cancer. This study addressed the hypothesis that endocannabinoids inhibit cell viability of chemoresistant ovarian cancer cells through ceramide-induced endoplasmic reticulum (ER) stress. We found that the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol (AEA and 2-AG, respectively) decreased ovarian cancer cells (IGROV1 and ES2) viability in a dose-dependent manner. We further demonstrated that endocannabinoids elicited pronounced ER stress, activated unfolded protein response (UPR) pathways, and increased C/EBP homologous protein (CHOP) levels in ovarian cancer cells. Reportedly, combination therapy with endocannabinoids sensitizes chemoresistant ovarian cancer cells to chemotherapeutic agents. Immunofluorescence staining revealed that the suppression of cell viability and induction of ER stress in ovarian cancer cells associated with an increase in the pro-apoptotic lipid ceramide. A specific inhibitor of ceramide de novo synthesis notably diminished endocannabinoid-induced ER stress. These data suggest that administration of endocannabinoids may be an effective way of treating ovarian tumors, with the underlying mechanism being the induction of the ceramide-dependent ER stress pathway.

    Abstract III 中文摘要 V Acknowledgment VII Contents VIII Figure contents X Chapter 1 Introduction 1 1.1 Ovarian cancer 1 1.2 The endocannabinoid system 2 1.3 ER stress 4 1.4 Ceramide 8 1.5 Motivation and specific aims 9 Chapter 2 Materials and Methods 10 2.1 Materials 10 2.2 Cell lines and culture 10 2.3 Cell viability assay 11 2.4 Western blotting 11 2.5 Immunofluorescence staining 12 2.6 Statistical analysis 12 Chapter 3 Results 13 3.1 Endocannabinoids inhibit ovarian cancer cell viability 13 3.2 Endocannabinoids increase Grp78 expression in ovarian cancer cells 13 3.3 The endocannabinoid-dependent increase Grp78 expression occurs via three UPR pathways 14 3.4 Endocannabinoids induce ER stress in chemoresistant ovarian cancer cells upon combination therapy 15 3.5 Endocannabinoids activate UPR signaling in cisplatin-resistant ovarian cancer cells 16 3.6 Endocannabinoid-induced ER stress occurs via ceramide accumulation in ovarian cancer cells 17 Chapter 4 Discussion 18 References 21 Figures 29

    Ayakannu, T., Taylor, A. H., Willets, J. M. & Konje, J. C. (2015). The evolving role of the endocannabinoid system in gynaecological cancer. Human Reproduction Update, 21(4), 517-535.
    Back, S. H., Schröder, M., Lee, K., Zhang, K. & Kaufman, R. J. (2005). ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods, 35(4), 395-416.
    Bahar, E., Kim, J. Y. & Yoon, H. (2019). Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel), 11(3),388.
    Bandet, C. L., Tan-Chen, S., Bourron, O., Le Stunff, H. & Hajduch, E. (2019). Sphingolipid metabolism: new insight into ceramide-induced lipotoxicity in muscle cells. International Journal of Molecular Sciences, 20(3), 479.
    Bielawska, A., Crane, H. M., Liotta, D., Obeid, L. M. & Hannun, Y. A. (1993). Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. Journal of Biological Chemistry, 268(35), 26226-26232.
    Bravo, R., Parra, V., Gatica, D., Rodriguez, A. E., Torrealba, N., Paredes, F. & Lavandero, S. (2013). Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. International Review of Cell and Molecular Biology, 301, 215-290.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.
    Cameron, N. E. (2013). Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes, 62(3), 696-697.
    Chang, C. C., Kuan, C. P., Lin, J. Y., Lai, J. S. & Ho, T. F. (2015). Tanshinone IIA facilitates TRAIL sensitization by up-regulating DR5 through the ROS-JNK-CHOP signaling axis in human ovarian carcinoma cell lines. Chemical Research in Toxicology, 28(8), 1574-1583.
    Choi, S., Snider, J. M., Olakkengil, N., Lambert, J. M., Anderson, A. K., Ross-Evans, J. S. & Snider, A. J. (2018). Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells. The FASEB Journal, 32(10), 5724-5736.
    Colombini, M. (2017). Ceramide channels and mitochondrial outer membrane permeability. Journal of Bioenergetics and Biomembranes, 49(1), 57-64.
    Contreras, C., González-García, I., Martínez-Sánchez, N., Seoane-Collazo, P., Jacas, J., Morgan, D. A. & López, M. (2014). Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Reports, 9(1), 366-377.
    Cubillos-Ruiz, J. R., Bettigole, S. E. & Glimcher, L. H. (2017). Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 168(4), 692-706.
    Dewson, G. & Kluck, R. M. (2009). Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 122(16), 2801.
    Fekry, B., Esmaeilniakooshkghazi, A., Krupenko, S. A. & Krupenko, N. I. (2016). Ceramide synthase 6 is a novel target of methotrexate mediating its antiproliferative effect in a p53-dependent manner. PLoS One, 11(1), e0146618.
    Fraguas-Sánchez, A. I., Martín-Sabroso, C. & Torres-Suárez, A. I. (2018). Insights into the effects of the endocannabinoid system in cancer: a review. British Journal of Pharmacology, 175(13), 2566-2580.
    Gómez del Pulgar, T., Velasco, G., Sánchez, C., Haro, A. & Guzmán, M. (2002). De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochemical Journal, 363(Pt 1), 183-188.
    Guindon, J. & Hohmann, A. G. (2011). The endocannabinoid system and cancer: therapeutic implication. British Journal of Pharmacology, 163(7), 1447-1463.
    Gustafsson, K., Sander, B., Bielawski, J., Hannun, Y. A. & Flygare, J. (2009). Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Molecular Cancer Research, 7(7), 1086-1098.
    Hebert, D. N. & Molinari, M. (2007). In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiological Reviews, 87(4), 1377-1408.
    Holmes, D. (2015). Ovarian cancer: beyond resistance. Nature, 527(7579), S217.
    Hu, H., Wang, C., Jin, Y., Meng, Q., Liu, Q., Liu, Z. & Sun, H. (2019). Catalpol inhibits homocysteine-induced oxidation and inflammation via inhibiting Nox4/NF-κB and GRP78/PERK pathways in human aorta endothelial cells. Inflammation, 42(1), 64-80.
    Huang, X., Zhang, Z., Jia, L., Zhao, Y., Zhang, X. & Wu, K. (2010). Endoplasmic reticulum stress contributes to vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells. Cancer Letters, 296(1), 123-131.
    Ibrahim, I. M., Abdelmalek, D. H. & Elfiky, A. A. (2019). GRP78: A cell's response to stress. Life Sciences, 226, 156-163.
    Jacobsson, S. O., Wallin, T. & Fowler, C. J. (2001). Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids. Relative involvement of cannabinoid and vanilloid receptors. Journal of Pharmacology and Experimental Therapeutics, 299(3), 951-959.
    Jiao, J. W. & Wen, F. (2011). Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells. Oncology Reports, 25(3), 781-788.
    Kartalou, M. & Essigmann, J. M. (2001). Mechanisms of resistance to cisplatin. Mutation Research, 478(1-2), 23-43.
    Kim, C. & Kim, B. (2018). Anti-Cancer natural products and their bioactive compounds inducing ER Stress-mediated apoptosis: a review. Nutrients, 10(8), 1021.
    Kim, I., Xu, W. & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 7(12), 1013-1030.
    Kim, T. W., Lee, S. Y., Kim, M., Cheon, C. & Ko, S. G. (2018). Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death & Disease, 9(9), 875.
    Klein, C., Hill, M. N., Chang, S. C., Hillard, C. J. & Gorzalka, B. B. (2012). Circulating endocannabinoid concentrations and sexual arousal in women. The Journal of Sexual Medicine, 9(6), 1588-1601.
    Kreitzburg, K. M., Fehling, S. C., Landen, C. N., Gamblin, T. L., Vance, R. B., Arend, R. C. & Yoon, K. J. (2018). FTY720 enhances the anti-tumor activity of carboplatin and tamoxifen in a patient-derived xenograft model of ovarian cancer. Cancer Letters, 436, 75-86.
    Lebeaupin, C., Vallée, D., Hazari, Y., Hetz, C., Chevet, E. & Bailly-Maitre, B. (2018). Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. Journal of Hepatology, 69(4), 927-947.
    Lee, A. S. (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods, 35(4), 373-381.
    Lee, A. S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Research, 67(8), 3496-3499.
    Lépine, S., Allegood, J. C., Edmonds, Y., Milstien, S. & Spiegel, S. (2011). Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. Journal of Biological Chemistry, 286(52), 44380-44390.
    Liu, Y., Gong, W., Yang, Z. Y., Zhou, X. S., Gong, C., Zhang, T. R. & Gao, Q. L. (2017). Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 22(4), 544-557.
    Ma, B., Zhang, H., Wang, Y., Zhao, A., Zhu, Z., Bao, X. & Zhang, Q. (2018). Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. Journal of Experimental & Clinical Cancer Research, 37(1), 210.
    Ma, C., Wu, T. T., Jiang, P. C., Li, Z. Q., Chen, X. J., Fu, K. & Gong, R. (2016). Anti-carcinogenic activity of anandamide on human glioma in vitro and in vivo. Molecular Medicine Reports, 13(2), 1558-1562.
    Mandic, A., Hansson, J., Linder, S. Shoshan, M. C. (2003). Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. Journal of Biological Chemistry, 278(11), 9100-9106.
    Martinon, F. (2012). Targeting endoplasmic reticulum signaling pathways in cancer. Acta oncologica, 51(7), 822-830.
    Mechoulam, R., Hanuš, L. O., Pertwee, R. & Howlett, A. C. (2014). Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 15(11), 757-764.
    Melck, D., De Petrocellis, L., Orlando, P., Bisogno, T., Laezza, C., Bifulco, M. & Di Marzo, V. (2000). Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology, 141(1), 118-126.
    Messalli, E. M., Grauso, F., Luise, R., Angelini, A. & Rossiello, R. (2014). Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors. American Journal of Obstetrics and Gynecology, 211(3), 234.
    Orellana-Serradell, O., Poblete, C. E., Sanchez, C., Castellón, E. A., Gallegos, I., Huidobro, C. & Contreras, H. R. (2015). Proapoptotic effect of endocannabinoids in prostate cancer cells. Oncology Reports, 33(4), 1599-1608.
    Oslowski, C. M. & Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in Enzymology, 490, 71-92.
    Panda, P. K., Naik, P. P., Meher, B. R., Das, D. N., Mukhopadhyay, S., Praharaj, P. P. & Bhutia, S. K. (2018). PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation. Biochimica et Biophysica Acta - Molecular Cell Research, 1865(3), 480-495.
    Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J. A., & Majsterek, I. (2016). The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Current Molecular Medicine, 16(6), 533-544.
    Salazar, M., Carracedo, A., Salanueva, I. J., Hernández-Tiedra, S., Lorente, M., Egia, A. & Velasco, G. (2009). Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. Journal of Clinical Investigation, 119(5), 1359-1372.
    Shi, S., Tan, P., Yan, B., Gao, R., Zhao, J., Wang, J. & Ma, Z. (2016). ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells. Oncology Reports, 35(5), 2606-2614.
    Soliman, E., Henderson, K. L., Danell, A. S. & Van Dross, R. (2016). Arachidonoyl-ethanolamide activates endoplasmic reticulum stress-apoptosis in tumorigenic keratinocytes: Role of cyclooxygenase-2 and novel J-series prostamides. Molecular Carcinogenesis, 55(2), 117-130.
    Verfaillie, T., Garg, A. D. & Agostinis, P. (2013). Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Letters, 332(2), 249-264.
    Wang, D., Zhang, P., Xu, X., Wang, J., Wang, D., Peng, P. & Luo, Z. (2019). Knockdown of cytokeratin 8 overcomes chemoresistance of chordoma cells by aggravating endoplasmic reticulum stress through PERK/eIF2α arm of unfolded protein response and blocking autophagy. Cell Death & Disease, 10(12), 887.
    Winkler, K., Ramer, R., Dithmer, S., Ivanov, I., Merkord, J. & Hinz, B. (2016). Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget, 7(12), 15047-15064.
    Zhang, R., Wang, R., Chen, Q. & Chang, H. (2015). Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Molecular Medicine Reports, 12(2), 1727-1732.

    下載圖示 校內:2025-08-20公開
    校外:2025-08-20公開
    QR CODE