| 研究生: |
何禹萱 Ho, Yeu-Shiuan |
|---|---|
| 論文名稱: |
環化反應機制與多重螺烯結構的分析與探討 Mechanical Investigations of Annulation Reactions and Structural Analysis of Nanographenes with Multiple Helicities |
| 指導教授: |
鄭沐政
Cheng, Mu-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | Conia-ene反應 、自由基環化反應 、密度泛函理論 、多重螺烯分子 |
| 外文關鍵詞: | Conia-ene reaction, Density Functional Theory (DFT), Radical cascade cyclization, Multiple helicene |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳環化反應在有機化學中是非常重要的合成工具,因為許多有經濟效益的天然物或生物活性分子皆具有多環的骨架。本研究提供兩種分別以電子對與自由基進行環化的反應路徑,而這些反應的過程與結果都是前所未有的。
在第一個小節中,本研究藉由密度泛函理論研究了Conia-ene反應,發現在反應過程中,具有1,3-二羰基的反應物與Au(I)催化劑經過活化發生5-endo-dig環化加成後,由於醛基被質子活化而引發一系列的遷移反應,最後導致非Conia-ene產物的產生。
在第二小節中,本研究提供了能讓亞硝基苯應用於可形成雙環的串聯環化反應,且環境溫度只須常溫,亦不須使用任何催化劑、自由基引發劑或終止劑等。經密度泛函理論計算確認了反應路徑:1-丙二烯基-2-炔基苯與兩個亞硝基苯進行環化反應,形成六圓環和五圓環的雙環主骨架。隨後,N-O斷鍵形成雙自由基,再進行C-N加成環化,產生最終產物。
多重螺烯分子因具有龐大共軛系統以及高度扭曲的骨架,故其芳香性與旋光性特殊,為具有潛力的有機光電材料。然其光學性質會受異構化影響,且其構型眾多,因此本研究發展出一個簡單的最穩定異構物預測方法,利用將多重螺烯拆解成雙螺烯並分析其螺旋構型,便能以最小的計算量獲得異構物相對能量。
Carbon ring-closing reactions play a crucial role in organic chemistry as they are utilized to synthesize many economically valuable natural products and biologically active molecules with multicyclic frameworks. This study introduces two unprecedented reaction pathways involving electron pairs and free radicals for the purpose of ring closure.
In the first section, the Conia-ene reaction was investigated using density functional theory. It was observed that under the influence of an Au(I) catalyst, the reactant containing 1,3-dicarbonyl functionality exhibited 5-endo-dig cyclization. The activation of the aldehyde group by a proton initiated a series of migration reactions, eventually resulting in the formation of non-Conia-ene products.
The second section presents a novel cascade cyclization reaction employing nitrobenzene, capable of forming a bicyclic structure at room temperature without the need for catalysts, radical initiators, or terminators. The reaction pathway was confirmed through density functional theory calculations: 1-allenyl-2-alkynylbenzene underwent cyclization with two nitrobenzenes, leading to the formation of a bicyclic framework comprising a six-membered and a five-membered ring. Subsequently, N-O bond cleavage generated double radicals, followed by C-N addition and cyclization, ultimately yielding the final product.
Multiple helicenes, characterized by extensive conjugated systems and highly twisted frameworks, exhibit distinctive aromatic and chiral properties, making them promising materials for optical or electronic divices. However, their optical properties are affected by isomerization, and they can have various conformations. Therefore, this study developed a simple method to predict the most stable diastereomer. By decomposing multiple helicenes into double helicene units and analyzing their helical configurations, the relative energies of the diastereomers can be determined with minimal computational effort.
1. Chao-Jun, L., Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update. Chem. Rev. 2005, 105 (8), 3095-3165.
2. Oppolzer, W.; Snieckus, V., Intramolecular Ene Reactions in Organic Synthesis. Angew. Chem. Int. Ed. 1978, 17 (7), 476-486.
3. Hack, D.; Blumel, M.; Chauhan, P.; Philipps, A. R.; Enders, D., Catalytic Conia-ene and related reactions. Chem. Soc. Rev. 2015, 44 (17), 6059-93.
4. J. M. CONIA, P. L. P., The Thermal Cyclisation of Unsaturated Carbonyl Compounds. Synthesis 1975, (1), 1-19.
5. Toste, B. K. C. a. F. D., Catalytic Enantioselective Conia-Ene Reaction. J. Am. Chem. Soc. 2005, 127, 17168-17169.
6. Matsuzawa, A.; Mashiko, T.; Kumagai, N.; Shibasaki, M., La/Ag heterobimetallic cooperative catalysis: a catalytic asymmetric Conia-ene reaction. Angew. Chem. Int. Ed. 2011, 50 (33), 7616-9.
7. Suzuki, S.; Tokunaga, E.; Reddy, D. S.; Matsumoto, T.; Shiro, M.; Shibata, N., Enantioselective 5-endo-dig carbocyclization of beta-ketoesters with internal alkynes employing a four-component catalyst system. Angew. Chem. Int. Ed. 2012, 51 (17), 4131-5.
8. Ting Yang, A. F., Filippo Sladojevich, Leonie Campbell, and Darren J. Dixon, Brønsted Base/Lewis Acid Cooperative Catalysis in the Enantioselective Conia-Ene Reaction. J. Am. Chem. Soc. 2009, 131, 9140–9141.
9. Tsuji, H.; Yamagata, K.; Itoh, Y.; Endo, K.; Nakamura, M.; Nakamura, E., Indium-catalyzed cycloisomerization of omega-alkynyl-beta-ketoesters into six- to fifteen-membered rings. Angew. Chem. Int. Ed. 2007, 46 (42), 8060-2.
10. Hartrampf, F. W.; Furukawa, T.; Trauner, D., A Conia-Ene-Type Cyclization under Basic Conditions Enables an Efficient Synthesis of (-)-Lycoposerramine R. Angew. Chem. Int. Ed. 2017, 56 (3), 893-896.
11. Olson, F. E. M. a. T. C., Group VI Metal-Promoted Endo-Carbocyclizations via Alkyne-Derived Metal Vinylidene Carbenes. Tetrahedron Lett. 1997, 38 (44), 7691-7692.
12. Joshua J. Kennedy-Smith, S. T. S., and F. Dean Toste, Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes. J. Am. Chem. Soc. 2004, 126, 4526-4527.
13. Huang, S.; Du, G.; Lee, C. S., Construction of the tricyclic furanochroman skeleton of phomactin A via the Prins/Conia-ene cascade cyclization approach. J. Org. Chem. 2011, 76 (16), 6534-41.
14. Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.; Kondoh, A.; Furstner, A., Increasing the structural span of alkyne metathesis. Chem. Eur. J. 2013, 19 (39), 13047-58.
15. Huwyler, N.; Carreira, E. M., Total synthesis and stereochemical revision of the chlorinated sesquiterpene (+/-)-gomerone c. Angew. Chem. Int. Ed. 2012, 51 (52), 13066-9.
16. Narode, A. S.; Ho, Y. S.; Cheng, M. J.; Liu, R. S., Gold-Catalyzed Addition of beta-Oxo Enols at Tethered Alkynes via a Non-Conia-ene Pathway: Observation of a Formal 1,3-Hydroxymethylidene Migration. Org. Lett. 2023, 25 (9), 1589-1594.
17. BALDWIN, J. E., Rules for ring closure. J. Chem. Soc., Chem. Commun. 1976, 734-736.
18. Femia, A. P.; Soares, P. V.; Luceri, C.; Lodovici, M.; Giannini, A.; Caderni, G., Sulindac, 3,3'-diindolylmethane and curcumin reduce carcinogenesis in the Pirc rat, an Apc-driven model of colon carcinogenesis. BMC Cancer 2015, 15 (1), 1-9.
19. Prade, E.; Barucker, C.; Sarkar, R.; Althoff-Ospelt, G.; Lopez del Amo, J. M.; Hossain, S.; Zhong, Y.; Multhaup, G.; Reif, B., Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-beta Peptide Which Exhibit Reduced Neurotoxicity. Biochemistry 2016, 55 (12), 1839−1849.
20. Lane, A. L.; Nam, S. J.; Fukuda, T.; Yamanaka, K.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.; Moore, B. S., Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes. J. Am. Chem. Soc. 2013, 135 (11), 4171−4174.
21. Taiko Oda, Y. S., Yoshihiro Sato, Noriaki Shimizu, Hiroshi Handa,; Yukio Yasukochi, T. K., Inhibition by (±)-indenestrol A of interferon gamma-stimulated nitric oxide formation in murine macrophage RAW 264.7 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis abbrieviation 2003, 534 (1-2), 187-195.
22. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16 Rev. C.01. Wallingford, CT: 2016.
23. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100.
24. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
25. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37 (2), 785-789.
26. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56 (5), 2257-2261.
27. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A., Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J. Chem. Phys. 1982, 77 (7), 3654-3665.
28. Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82 (1), 299-310.
29. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72 (1), 650-654.
30. Timothy Clark, J. C., Günther W. Spitznagel, Paul Von Ragué Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comput. Chem. 1983, 4 (3), 294-301.
31. Martin, J. M. L.; Sundermann, A., Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe. J. Chem. Phys. 2001, 114 (8), 3408-3420.
32. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
33. Cossi, V. B. a. M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995–2001.
34. MAURIZIO COSSI, N. R., GIOVANNI SCALMANI, VINCENZO BARONE, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24 (6), 669–681.
35. Echavarren, E. J.-N. a. A. M., Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective. Chem. Rev. 2008, 108 (8), 3326–3350.
36. David Garayalde, E. G.-B., Xiaogen Huang, Andreas Goeke and Cristina Nevado, Mechanistic Insights in Gold-Stabilized Nonclassical Carbocations: Gold-Catalyzed Rearrangement of 3-Cyclopropyl Propargylic Acetates. J. Am. Chem. Soc. 2010, 132 (13), 4720–4730.
37. Craig P. Jasperse, D. P. C., and Thomas L. Fevig, Radical reactions in natural product synthesis. Chem. Rev. 1991, 91 (6), 1237–1286.
38. Xuan, J.; Studer, A., Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chem. Soc. Rev. 2017, 46 (14), 4329-4346.
39. Liao, J.; Yang, X.; Ouyang, L.; Lai, Y.; Huang, J.; Luo, R., Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Org. Chem. Front. 2021, 8 (6), 1345-1363.
40. Huang, H. M.; Garduno-Castro, M. H.; Morrill, C.; Procter, D. J., Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 2019, 48 (17), 4626-4638.
41. Tefsit Bekele, C. F. C., Mark A. Lipton, and Daniel A. Singleton, “Concerted” Transition State, Stepwise Mechanism. Dynamics Effects in C2-C6 Enyne Allene Cyclizations. J. Am. Chem. Soc. 2005, 127 (25), 9216–9223.
42. Schmittel, M.; Vavilala, C.; Jaquet, R., Elucidation of nonstatistical dynamic effects in the cyclization of enyne allenes by means of kinetic isotope effects. Angew. Chem. Int. Ed. 2007, 46 (36), 6911-6914.
43. Schmittel, M.; Strittmatter, M.; Kiau, S., An Unprecedented Biradical Cyclization as an Alternative Pathway to the Myers–Saito Cycloaromatization in the Thermal Reactions of Enyne Allenes. Angew. Chem. Int. Ed. 1996, 35 (16), 1843-1845.
44. Amit Basak, S. D., Dibyendu Mallick, and Eluvathingal D. Jemmis, Which One Is Preferred: Myers−Saito Cyclization of Ene-Yne-Allene or Garratt−Braverman Cyclization of Conjugated Bisallenic Sulfone? A Theoretical and Experimental Study. J. Am. Chem. Soc. 2009, 131 (43), 15695–15704.
45. Jing Zhao, C. O. H., and F. Dean Toste, Synthesis of Aromatic Ketones by a Transition Metal-Catalyzed Tandem Sequence. J. Am. Chem. Soc. 2006, 128 (23), 7436–7437.
46. Dragovich, A. G. M. a. P. S., Design and Dynamics of a Chemically Triggered Reaction Cascade Leading to Biradical Formation at Subambient Temperature. J. Am. Chem. Soc. 1989, 111 (25), 9130-9132.
47. Schmittel, M.; Vavilala, C.; Cinar, M. E., The thermal C2-C6(Schmittel)/ene cyclization of enyne-allenes - crossing the boundary between classical and nonstatistical kinetics. J. Phys. Org. Chem. 2012, 25 (3), 182-197.
48. Matthias Prall, A. W., and Peter R. Schreiner, Can Fulvenes Form from Enediynes? A Systematic High-Level Computational Study on Parent and Benzannelated Enediyne and Enyne−Allene Cyclizations. J. Phys. Chem. A 2001, 105 (40), 9265–9274.
49. Bergman, R. R. J. a. R. G., p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J. Am. Chem. Soc. 1972, 94 (2), 660–661.
50. Bergman, R. G., Reactive 1,4-dehydroaromatics. Acc. Chem. Res. 1973, 6 (1), 25–31.
51. Amit Basak, S. M., and Subhendu Sekhar Bag, Chelation-Controlled Bergman Cyclization: Synthesis and Reactivity of Enediynyl Ligands. Chem. Rev. 2003, 3 (10), 4077–4094.
52. Gao, Y.; Yang, S.; Xiao, W.; Nie, J.; Hu, X. Q., Radical chemistry of nitrosoarenes: concepts, synthetic applications and directions. Chem. Commun. 2020, 56 (89), 13719-13730.
53. Fisher, D. J.; Burnett, G. L.; Velasco, R.; Read de Alaniz, J., Synthesis of Hindered alpha-Amino Carbonyls: Copper-Catalyzed Radical Addition with Nitroso Compounds. J. Am. Chem. Soc. 2015, 137 (36), 11614-11617.
54. Andrea Penoni, G. P., Yi-Lei Zhao, Kendall N. Houk, Jerome Volkman, and Kenneth M. Nicholas, On the Mechanism of Nitrosoarene−Alkyne Cycloaddition. J. Am. Chem. Soc. 2009, 131 (2), 653–661.
55. Li, X.; Feng, T.; Li, D.; Chang, H.; Gao, W.; Wei, W., Straightforward Approach toward Multifunctionalized Aziridines via Catalyst-Free Three-Component Reactions of alpha-Diazoesters, Nitrosoarenes, and Alkynes. J. Org. Chem. 2020, 85 (15), 9538-9547.
56. Houk, A. G. L. a. K. N., The Ene Reactions of Nitroso Compounds Involve Polarized Diradical Intermediates. J. Am. Chem. Soc. 2002, 124 (50), 14820–14821.
57. Leach, A. G.; Houk, K. N., The mechanism and regioselectivity of the ene reactions of nitroso compounds: a theoretical study of reactivity, regioselectivity, and kinetic isotope effects establishes a stepwise path involving polarized diradical intermediates. Org. Biomol. Chem. 2003, 1 (8), 1389-1403.
58. Kang, J. Y.; Bugarin, A.; Connell, B. T., Conversion of nitrosobenzenes to isoxazolidines: an efficient cascade process utilizing reactive nitrone intermediates. Chem. Commun. 2008, (30), 3522-3524.
59. Sharma, P.; Liu, R. S., [3 + 2]-Annulations of N-Hydroxy Allenylamines with Nitrosoarenes: One-Pot Synthesis of Substituted Indole Products. Org. Lett. 2016, 18 (3), 412-415.
60. Liu, J.; Skaria, M.; Sharma, P.; Chiang, Y. W.; Liu, R. S., Ground-state dioxygen undergoes metal-free [3 + 2]-annulations with allenes and nitrosoarenes under ambient conditions. Chem. Sci. 2017, 8 (8), 5482-5487.
61. Maitra, C.; Jadhav, P. D.; Barik, D.; Ho, Y. S.; Cheng, C. C.; Cheng, M. J.; Chiang, Y. W.; Liu, R. S., Nitrosoarenes Implement Cascade Cyclization of 1-Allenyl-2-alkynylbenzenes through Diradical Mechanism. Org. Lett. 2023, 25 (1), 82-86.
62. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A., Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 2013, 113 (18), 2110-2142.
63. Baerends, L. N. a. E. J., Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory. J. Am. Chem. Soc. 1984, 106 (8), 2316–2327.
64. L. Noodleman, C. Y. P., D.A. Case, J.-M. Mouesca, Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord. Chem. Rev. 1995, 144, 199-244.
65. Honig, K. A. S. a. B., Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. 1990, 94 (19), 7684–7692.
66. Boschitsch, A. H.; Fenley, M. O., A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids. J. Chem. Theory Comput. 2011, 7 (5), 1524-1540.
67. Ringe, S.; Oberhofer, H.; Hille, C.; Matera, S.; Reuter, K., Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT. J. Chem. Theory Comput. 2016, 12 (8), 4052-4066.
68. Leach, A. G.; Houk, K. N., Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and triazolinediones: transition states and mechanisms from contemporary theory. Chem. Commun. 2002, (12), 1243-55.
69. Krebs, W. A. a. O., The Nitroso Ene Reaction: A Regioselective and Stereoselective Allylic Nitrogen Functionalization of Mechanistic Delight and Synthetic Potential. Chem. Rev. 2003, 103 (10), 4131–4146.
70. Suzuki, N.; Asada, T.; Kawamura, A.; Masuyama, Y., Sulfur-containing stable five-membered “cycloallene” complexes: 1-thia-2-zircona- and 1-thia-2-titanacyclopenta-3,4-dienes. Org. Chem. Front. 2015, 2 (6), 681-687.
71. Roy, S.; Jemmis, E. D.; Ruhmann, M.; Schulz, A.; Kaleta, K.; Beweries, T.; Rosenthal, U., Theoretical Studies on the Structure and Bonding of Metallacyclocumulenes, -cyclopentynes, and -cycloallenes. Organometallics 2011, 30 (10), 2670-2679.
72. Stoll, S.; Schweiger, A., EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178 (1), 42-55.
73. Gingras, M., One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 2013, 42 (3), 968-1006.
74. Gingras, M.; Felix, G.; Peresutti, R., One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. Chem. Soc. Rev. 2013, 42 (3), 1007-50.
75. Bedi, A.; Gidron, O., The Consequences of Twisting Nanocarbons: Lessons from Tethered Twisted Acenes. Acc. Chem. Res. 2019, 52 (9), 2482-2490.
76. Huang, H. C.; Hsieh, Y. C.; Lee, P. L.; Lin, C. C.; Ho, Y. S.; Shao, W. K.; Hsieh, C. T.; Cheng, M. J.; Wu, Y. T., Highly Distorted Multiple Helicenes: Syntheses, Structural Analyses, and Properties. J. Am. Chem. Soc. 2023, 145 (18), 10304-10313.
77. Wu, Y.-F.; Zhang, L.; Zhang, Q.; Xie, S.-Y.; Zheng, L.-S., Multiple [n]helicenes with various aromatic cores. Org. Chem. Front. 2022, 9 (17), 4726-4743.
78. Tsurusaki, A.; Kamikawa, K., Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. Chem. Lett. 2021, 50 (11), 1913-1932.
79. Li, C.; Yang, Y.; Miao, Q., Recent Progress in Chemistry of Multiple Helicenes. Chem. Asian J. 2018, 13 (8), 884-894.
80. Shen, Y.; Chen, C. F., Helicenes: synthesis and applications. Chem. Rev. 2012, 112 (3), 1463-535.
81. Mori, T., Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev. 2021, 121 (4), 2373-2412.
82. Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T., Symmetry-based rational design for boosting chiroptical responses. Communications Chemistry 2018, 1 (1), 38.
83. Matsuoka, W.; Ito, H.; Sarlah, D.; Itami, K., Diversity-oriented synthesis of nanographenes enabled by dearomative annulative pi-extension. Nat. Commun. 2021, 12 (1), 3940.
84. Tokoro, Y.; Oishi, A.; Fukuzawa, S. I., Twisted Polycyclic Aromatic Systems Prepared by Annulation of Bis(arylethynyl)arenes with Biphenylboronic Acids. Chem. Eur. J. 2016, 22 (39), 13908-13915.
85. Liu, T.-A. C. a. R.-S., Synthesis of Large Polycyclic Aromatic Hydrocarbons from Bis(biaryl)acetylenes: Large Planar PAHs with Low π-Sextets. Org. Lett. 2011, 13 (17), 4644–4647.
86. Yanney, M.; Fronczek, F. R.; Henry, W. P.; Beard, D. J.; Sygula, A., Cyclotrimerization of Corannulyne: Steric Hindrance Tunes the Inversion Barriers of Corannulene Bowls. Eur. J. Org. Chem. 2011, 2011 (33), 6636-6639.