簡易檢索 / 詳目顯示

研究生: 城嘉穗
Chen, Chia-Sui
論文名稱: 正常足部三維有限元素模型建立之探討
Investigating The Modeling of a Normal Foot Finite Element Mesh
指導教授: 張志涵
Chang, Chih-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 足部生物力學有限元素法足部有限元素模型
外文關鍵詞: foot biomechanics, foot finite element model, finite element method
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的足部結構,在人體與地面接觸、互動時扮演了重要的角色。足部結構不只承受著人體的重量,在移動時更可以緩衝來自於地面之震動及衝擊。近年來由於科學之進步,使得足部生物力學之研究不論在理論方法上或是量測儀器上,都有顯著的進步。使用有限元素模擬(Finite element method,FEM)可預先評估足部應力分佈狀況,以及探討足部生物力學。但欲得到較為可靠且正確的分析結果,勢必先建立一完整且合理的足部有限元素模型。在建模方面,除了幾何外型須進量符合真實結構外,建構程序亦相當重要!本研究藉重實驗室之前使用有限元素法進行生物力學分析的經驗,以電腦輔助設計之軟體建構一完整正常足部骨骼之三維有限元素模型,進而探討建構足部此一具有複雜幾何外型結構的程序與影響,以作為往後建立其它複雜結構生物力學有限元素模型之參考。
    在模型建構方面,分別使用ANSYS及SolidWorks兩種電腦輔助設計軟體,以四種不同方法建立四個足部模型。從ANSYS Workbench網格化及分析的結果顯示,使用SolidWorks並依照方法四的建構流程,所得之模型不僅幾何外型接近真實足部、網格化的元素大小規則,且經收歛性測試後,von Mises stress的值趨於定值。由此可知,與其他三個模型比較起來,模型四應為合理且可被接受的結果。因此,使用SolidWorks並依照方法四建構程序,是較為適合用來建立足部此一具有複雜幾何外型結構的方法!

    The foot, which plays an important role while human beings interact with the ground, is not only the weight-bearing but also the shock-absorbing structure during ambulation. Recently, the foot biomechanics has made great progress in both measurement instrumentation and theoretical methodology due to the scientific advances. Finite element method (FEM) can be utilized to evaluate the stress distribution of the foot beforehand, and probe into the biomechanics of the foot. So as to obtain reliable and precise analytic results, it is imperative to establish one intact and rational foot finite element model. While we establish such a complicated model, the geometry and establishing procedures are considerably significant. Based on the experience of using FEM to do biomechanical researches in the lab, this research used computer-aided programs to build a 3-D normal foot finite element model. Furthermore, we investigated the influence of different procedures and methods.
    In this research, we used two programs - ANSYS and SolidWorks for the generation of four foot models. The results in ANSYS Workbench showed that the model 4 is better than the others, no matter in geometry or mesh. Thus it can be seen that the model 4 is more rational and acceptable than the other three models, and it is relatively the appropriate way to establish such a complicated and irregular model.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3研究動機與目的 9 第2章 基本理論與研究設備 10 2.1 足部解剖生理學 10 2.1.1跗骨 10 2.1.2蹠骨和趾骨 11 2.2足部功能性結構 15 2.2.1 足弓 15 2.3 有限元素法簡介 17 2.4 電腦輔助設計軟體 19 第3章 材料與方法 20 3.1 研究流程 20 3.2 二維足部有限元素模型之建立 21 3.2.1 模型的材料特性 22 3.2.2 使用接觸元素模擬界面之力學特性 23 3.2.3 模型的負載與邊界條件 24 3.3 三維足部有限元素模型之建立 25 3.3.1 用ANSYS建立之足部模型—模型一 28 3.3.2 用SolidWorks建立之足部模型—模型二 28 3.3.3 用SolidWorks建立之足部模型—模型三 30 3.3.4 用SolidWorks建立之足部模型—模型四 33 第4章 結果 35 4.1 二維足部有限元素模型 35 4.2 三維足部有限元素模型 39 4.2.1用ANSYS建立之足部模型—模型一 39 4.2.2用SolidWorks建立之足部模型—模型二 41 4.2.3用SolidWorks建立之足部模型—模型三 44 4.2.4用SolidWorks建立之足部模型—模型四 49 第5章 討論 56 5.1 有限元素模型之建立 56 5.2 有限元素模型之驗證 58 第6章 結論 61 參考文獻 63 表目錄 表3-2-1.1 本研究所使用之材料特性 22 表5-2 收斂測試數據 60 圖目錄 圖1-2.1 Chu的三維有限元素模型 5 圖1-2.2陳文斌教授三維有限元素模型 6 圖1-2.3陳文斌教授三維有限元素模型 6 圖1-2.4莊舜弘的三維有限元素模型 7 圖1-2.5洪薇清的三維有限元素模型 7 圖1-2.6林師誠的三維有限元素模型 8 圖1-2.7安介南教授的三維有限元素模型 8 圖2-1跟骨、距骨、舟狀骨及骰骨 12 圖2-2右足背面骨骼的肌肉附著處 13 圖2-3右足底部的肌肉附著處 14 圖2-4右足內縱足弓、外縱足弓與橫弓 16 圖3-2.1高弓足、正常足與扁平足的骨性結構圖 21 圖3-2.2 骨頭輪廓的點資料 21 圖3-2-2.1接觸區域 23 圖3-2-3.1負載與限制條件 24 圖3-3.1 足部電腦斷層掃描之影像 25 圖3-3.2 CT tool操作介面 26 圖3-3.3 以CT tool抓出輪廓之情形 26 圖3-3.4 以ANSYS建構三維有限元素模型流程圖 27 圖3-3.5 以SolidWorks建構之流程圖 27 圖3-3-2.1 第三蹠骨在SolidWorks中的輪廓圖 28 圖3-3-2.2 模型二的第三蹠骨疊層拉伸圖 29 圖3-3-2.3 模型二的第三蹠骨實體模型圖 29 圖3-3-3.1 模型三的第三蹠骨 31 圖3-3-3.2 導圓角後的第三蹠骨 32 圖3-3-3.3第三趾骨與第三蹠骨 32 圖3-3-3.4第三趾骨與第三蹠骨間軟骨 33 圖3-3-4.1模型四的第三蹠骨 33 圖3-3-4.2模型四的第三趾骨與蹠骨間軟骨 34 圖4-1.1 二維足部有限元素網格圖 35 圖4-1.2 扁平足、正常足、高弓足應力分佈圖 37 圖4-1.3 第一蹠骨、楔狀骨與舟狀骨的最大von Mises stress值 38 圖4-2-1.1 足部模型一 39 圖4-2-1.2 第一趾骨網格圖 40 圖4-2-1.3 模型一 40 圖4-2-2.1 模型二 41 圖4-2-2.2 第三蹠骨測試圖 42 圖4-2-2.3 第三蹠骨應力分佈圖 42 圖4-2-2.4 模型二網格圖 43 圖4-2-2.5 距骨網格圖 43 圖4-2-3.1模型三 44 圖4-2-3.2 模型三網格圖(2 mm) 46 圖4-2-3.3 模型三網格圖(1.5 mm) 47 圖4-2-4.1 模型四 49 圖4-2-4.2 模型四網格圖(2 mm) 51 圖4-2-4.3 模型四網格圖(3 mm) 53 圖4-3.1 設定負載與邊界條件 57 圖4-3.2 所選擇之定點 57 圖5-2.1設定負載與邊界條件 59 圖5-2.2所選擇之定點 59 圖6-1 本研究目前所建之足底筋膜 62 圖6-2利用SolidWorks調整骨頭排列角度 62

    1. 林師誠(2004);“正常足部之三維動態有限元素分析”,中原大學醫學工程學系碩士學位論文。
    2. 汪作良,曹智超(1997);“認識扁平足”,高醫醫訊。第16卷, 第11期。
    3. Chia-Hsin Chen, Mao-Hsiung Huang, Tien-Wen Chen, Ming-Cheng Weng, Chia-Ling Lee, Gwo-Jaw Wang. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch Phys Med Rehabil 2006; 87: 235-240.
    4. Weng-Pin Chen, Fuk-Tan Tang, Chia-Wei Ju. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Clin Biomech 2001; 16: 614-620.
    5. Balmaseda MT, Koozekanani SH, Fatehi MT, Gordon C, Dreyfuss PH, Tanbonliong EC. Ground reaction forces, center of pressure, and duration of stance with and without an ankle-foot orthosis. Arch Phys Med Rehabil 1988;69:1009-12.
    6. Lundeen S, Lundquist K, Cornwall MW, McPoil TG. Plantar pressure during level walking compared with other ambulatory activities. Foot Ankle Int 1994;15:324-8.
    7. Alexander IJ, Chao EYS, Johnson KA. The assessment of dynamic foot-to-ground contact forces and plantar pressure distribution: a review of the evolution of current techniques and clinical applications. Foot Ankle 1990;11:152-67.
    8. Brown M, Rudicel S, Esquenazi A. Measurement of dynamic pressures at the shoe-foot interface during normal walking with various foot orthosis using the FSCAN system. Foot Ankle Int 1996;17:152-6.
    9. Soames RW. Foot pressure patterns during gait. J Biomed Eng 1985;7:120-6.
    10. Rosenbaum D, Bauer G, Augat P, Claes L. Calcaneal fractures cause a lateral load shift in chopart joint contact stress and plantar pressure pattern in vitro. J Biomech 1996;29:1435-43.
    11. Parenteau CS, Viano DC, Petit PY. Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. J Biomech Eng 1998;220:105-11.
    12. Stahelin T, Nigg BM, Stefanyshyn DJ, van den Bogert AJ, Kim SJ. A method to determine bone movement in the ankle joint complex in vitro. J Biomech 1997;30:513-6.
    13. Scott SH, Winter DA. Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J Biomech 1993;26:1091-104.
    14. Arangio GA, Xiao D, Salathe EP. Biomechanical study of stress in the fifth metatarsal. Clin Biomech 1997;12:160-4.
    15. Glitsch U, Baumann W. The three-dimensional determination of internal loads in the lower extremity. J Biomech 1997;30:1123-31.
    16. Chu TM, Reddy NP, Padovan J. Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis. Med Eng Phys 1995;5:372-9.
    17. Jacob S, Patil KM, Braak LH, Huson A. Stresses in a 3-D two arch model of a normal human foot. Mech Res Commun 1996; 23:387-93.
    18. Lemmon D, Shiang TY, Hashmi A, Ulbrecht JS, Cavanagh PR. The effect of insoles in therapeutic footwear-a finite element approach. J Biomech 1997;30:615-20.
    19. Yettram AL, Camilleri NN. The forces acting on the human calcaneus. J Biomed Eng 1993;15:46-50.
    20. Berkelmans WAM, Poort HW, Slooff TJJH. A new method to analyze the mechanical behavior of skeletal parts. ACTA Orthop Scand 1972;34:301-317.
    21. Siegler S, Seliktar R, Hyman W. Simulation of human gait with the aid of a simple mechanical model. J Biomech 1982;15:415-425.
    22. 陳文斌(1998);“糖尿病病人的足部與輔具之三維有限元素接觸應力分析”,中華醫學工程學刊。18(2):79-87。
    23. 陳文斌(1999);“全觸式鞋內墊與足部之生物力學評估”,中華醫學工程學刊。
    24. 莊舜弘(2001);“正常足部之三維準靜態有限元素分析”,中原大學醫學工程學系碩士學位論文。
    25. Snell, Richard S.,麥麗敏總編譯(1999)臨床解剖學,合記圖書出版社。
    26. Rao UB, Joseph B. The influence of footwear on the prevalence of flat foot. A survey of 2300 children. J Bone Joint Surg Br 1992;74:525-7.
    27. Gregory C. Pomeroy, R. Howard Pike, Timothy C. Beals and Arthur Manoli. Current concepts review: Acquired flatfoot in adults due to dysfunction of the posterior tibial tendon. J Bone Joint Surg Am 1999;81:1173-83.
    28. Logan, DL.(1997)A first course in the finite element method. Boston: PWS publishing company.
    29. Saeed M, 陳新郁, 林政仁譯(2001)。Finite Element Analysis-Theory and Application with ANSYS. 有限元素分析-理論與應用ANSYS,高立圖書有限公司。
    30. 張志涵、陳守義、林瑞模。有限元素法於生物力學應用的概說。
    31. 蘇國誌(2006);“牙內根柱治療之生物力學探討--有限元素分析”,成功大學醫學工程學系碩士學位論文。
    32. elearningDJ編著(2006)Solidworks 2007實戰演練:基礎入門,經瑋國際股份有限公司。
    33. 洪薇清(2002);“踝具裝具之生物力學效應”,成功大學醫學工程學系碩士學位論文。
    34. Jason Tak-Man Cheung, Ming Zhang, Kai-Nan An, Clinical Biomechanics, 21(2006) 194-203.

    下載圖示 校內:立即公開
    校外:2008-01-24公開
    QR CODE