| 研究生: |
鄭昕旻 Cheng, Hsin-Min |
|---|---|
| 論文名稱: |
擬鹵素硫氰根陰離子及銫陽離子摻雜之鈣鈦礦太陽能電池研究 Studies of cesium cation doped in thiocyanate-based pseudohalide perovskite solar cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、硫氰酸 、銫 、穩定性 |
| 外文關鍵詞: | perovskite solar cells, stability, thiocyanate, cesium |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前有機無機混合鈣鈦礦太陽能電池最高效率為22%。然而,最常使用的
吸收材料CH3NH3PbI3 由於(PbI4)2- 遇到空氣中水分子會分解,因此以CH3NH3PbI3為吸收層的電池面臨穩定性的問題。本研究藉由(SCN)- 及Cs+ 摻雜合成FA1-xCsxPbI3-y(SCN)y 提升在大氣中的穩定性。
Pb 和SCN 有較強的鍵結以及其生成係數較大,與水分子的結合較弱,因此能提升鈣鈦礦於大氣中的穩定性。Cs 有助於降低鈣鈦礦結構的tolerance factor,抑制因水氣催化產生相變化。本論文中探討不同Cs 摻雜量對鈣鈦礦的影響以及薄膜退火穩度的影響,當Cs 摻雜量為10% 以及退火溫度為130oC 有最好的轉換效率約11%。對水氣的穩定性也有大幅的提升,元件無封裝無照光穩定度測試經過約300 小時後,效率只下降了10%。
微量Pb(SCN)2 摻雜有效提升鈣鈦礦晶體的晶粒大小。在前驅物中添加約5% 的Pb(SCN)2 將鈣鈦礦晶粒大小由平均300nm 提升至800nm,轉換效率也由13.9% 提升至15.1%。
We fabricated cesium cation doped in thiocyanate-based pseudohalide perovskite solar cells and achieved a power conversion efficiency of 11%. Then we made these solar cells without hole transport layer and encapsulation show greatly improved stability in humid air although the price of Pb(SCN)2 is only 5.9% of PbI2. These results demonstrate the pseudo-halide perovskite solar cells are of promising material for improving stability and reducing the cost of perovskite solar cells.
[1] M. A. Green; Photovoltaics: coming of age; In Photovoltaic Specialists Conference,1990., Conference Record of the Twenty First IEEE, pages 1–8 vol.1, 1990.
[2] Brian E. Hardin, Henry J. Snaith, and Michael D. McGehee, March , 2012, 6(3), 162–169.
[3] A.E. Becquerel, Comptes Rendus de L’Academie des Sciences, 1839, 9, 145–1 49.
[4] W. G. Adams and R. E. Day, Phil. Trans. R. Soc. Lond., 1877, 167, 313–349.
[5] C.E. Fritts, Advancement of Science, 1883, 33, 97.
[6] Foster C. Nix and Arnold W. Treptow, J. Opt. Soc. Am., 1939, 29(11), 457–462.
[7] Brian O’Regan and Michael Gratzel, Nature, 1991, 353(6346), 737–740.
[8] Simon Mathew, Aswani Yella, Peng Gao, Robin Humphry-Baker, CurchodBasile F. E.,Negar Ashari-Astani, Ivano Tavernelli, Ursula Rothlisberger, NazeeruddinMd. Khaja,
and Michael Grätzel, Nat Chem, 2014, 6(3), 242–247.
[9] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, Journal of theAmerican Chemical Society, 2009, 131(17), 6050–6051, PMID: 19366264.
[10] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE Journal of Photovoltaics, (6), 1433–1435.
[11] Xiong Z Verlinden PJ Dong JW Ye F Li H Zhu HJ Zhong M Yang Y Chen YF Feng ZQ Altermatt P Deng W, Chen D, IEEE J. Photovoltaics, 2015, available in early view.
[12] Kramer J Rana V Seutter S Deshpande A Stalcup T Kommera S Ashjaee J CalcaterraA Grupp D Dutton D Brown R Moslehi MM, Kapur P, PV Asia Pacific Conference (APVIA/PVAP), 2012.
[13] Suezaki T Matsumoto M Saito K Yoshida I Kondo M. Matsui T, Sai H, Proc. 28th European Photovoltaic Solar Energy Conference, 2013, pages 2213–2217.
[14] Matsui T Koida T Kondo M Nakao S Takeuchi Y Katayama H Yoshida I Sai H, Maejima K, Japanese Journal of Applied Physics in press.
[15] Twist R Spruytte SG Reinhardt F Kizilyalli IC Higashi GS Kayes BM, Nie H, Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[16] Nakaido K Takahashi N Onitsuka R Takamoto T Miyazaki Sasaki K, Agui T, Proceedings, 9th International Conference on Concentrating Photovoltaics Systems, 2013.
[17] Hills JS Sharps PR Timmons ML Hutchby JA Field H Ahrenkiel A Venkatasubramanian R, O’Quinn BC and Keyes B, Conference Record, 25th IEEE Photovoltaic Specialists Conference, 1997.
[18] Vernon SM Keavney CJ, Haven VE, Conference Record, 21st IEEE Photovoltaic Specialists Conference, 1990.
[19] First Solar Press Release, First Solar builds the highest efficiency thin film PV cell on record, 2014.
[20] Solibro Press Release, Solibro beats world record for solar cells, 2014.
[21] Jarmar T Lundberg O Edoff M Stolt L. Wallin E, Malm U, Photovoltaics: Research
and Applications, 2012, 20, 851–854.
[22] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E Moser, Michael Gratzel, and Nam-Gyu Park, August , 2012, 2, 591–.
[23] Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu, Jangwon Seo, and Sang Il Seok, Science, 2015, 348(6240), 1234–1237.
[24] Lioz Etgar, Peng Gao, Zhaosheng Xue, Qin Peng, Aravind Kumar Chandiran, Bin Liu, Md. K. Nazeeruddin, and Michael Gratzel, Journal of the American Chemical Society, 2012, 134(42), 17396–17399, PMID: 23043296.
[25] Samuel D. Stranks, Giles E. Eperon, Giulia Grancini, Christopher Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria Petrozza, and Henry J. Snaith, Science, 2013, 342(6156), 341–344.
[26] Amalie Dualeh, Thomas Moehl, Nicolas Ttreault, Jol Teuscher, Peng Gao, Mohammad Khaja Nazeeruddin, and Michael Gratzel, ACS Nano, 2014, 8(1), 362–373, PMID:24341597.
[27] Uwe Rau Daniel Abou-Ras, Thomas Kirchartz, Advanced Characterization Techniques for Thin Film Solar Cells; Wiley-VCH Verlag GmbH & Co. KGaA.
[28] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, and Jinsong Huang, Science, 2015, 347(6225), 967–970.
[29] Jarvist M. Frost, Keith T. Butler, Federico Brivio, Christopher H. Hendon, Mark van Schilfgaarde, and Aron Walsh, Nano Letters, 2014, 14(5), 2584–2590, PMID:
24684284.
[30] Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou, Michael B. Johnston,Laura M. Herz, and Henry J. Snaith, Energy Environ. Sci., 2014, 7, 982–988.
[31] Sigalit Aharon, Alexander Dymshits, Amit Rotem, and Lioz Etgar, J. Mater. Chem. A, 2015, 3, 9171–9178.
[32] Wei E. I. Sha, Xingang Ren, Luzhou Chen, and Wallace C. H. Choy, Applied Physics
Letters, 2015, 106(22).
[33] Teck Ming Koh, Kunwu Fu, Yanan Fang, Shi Chen, T. C. Sum, Nripan Mathews, Subodh G. Mhaisalkar, Pablo P. Boix, and Tom Baikie, The Journal of Physical Chemistry C, 2014, 118(30), 16458–16462.
[34] An-Na Cho Jin-Wook Lee, Dong-Jin Seol and Nam-Gyu Park, August , 2014, 26(29), 4991–4998.
[35] Norman Pellet, Dr. Peng Gao, Dr. Giuliano Gregori, Dr. Tae-Youl Yang, Dr. Mohammad K. Nazeeruddin, Prof. Joachim Maier, and Prof. Michael Gratzel, Angewandte Chemie, 2014, 53(12), 3151–3157.
[36] Baikie Tom, Fang Yanan, Kadro Jeannette M., Schreyer Martin, Wei Fengxia,
Mhaisalkar Subodh G., Gratzel Michael, and White Tim J., J. Mater. Chem. A, 2013, 1,
5628–5641.
[37] Zhen Li, Mengjin Yang, Ji-Sang Park, Su-Huai Wei, Joseph J. Berry, and Kai Zhu,
Chemistry of Materials, 2016, 28(1), 284–292.
[38] Jin-Wook Lee, Deok-Hwan Kim, Hui-Seon Kim, Seung-Woo Seo, Sung Min Cho, and Nam-Gyu Park, Advanced Energy Materials, 2015, 5(20), n/a–n/a, 1501310.
[39] Michael Kulbak, Satyajit Gupta, Nir Kedem, Igal Levine, Tatyana Bendikov, Gary
Hodes, and David Cahen, The Journal of Physical Chemistry Letters, 2016, 7(1), 167–
172, PMID: 26700466.
[40] Rachel E. Beal, Daniel J. Slotcavage, Tomas Leijtens, Andrea R. Bowring, Rebecca A. Belisle, William H. Nguyen, George F. Burkhard, Eric T. Hoke, and Michael D. McGehee, The Journal of Physical Chemistry Letters, 2016, 7(5), 746–751, PMID: 26863290.
[41] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, and Mercouri G. Kanatzidis, June , 2014, 8(6), 489–494.
[42] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, and Mercouri G. Kanatzidis, June , 2014, 8(6), 489–494.
[43] Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herz, and Henry J. Snaith, Energy Environ. Sci., 2014, 7, 3061–3068.
[44] Feng Hao, Constantinos C. Stoumpos, Robert P. H. Chang, and Mercouri G. Kanatzidis, Journal of the American Chemical Society, 2014, 136(22), 8094–8099, PMID:24823301.
[45] Fan Zuo, Spencer T. Williams, Po-Wei Liang, Chu-Chen Chueh, Chien-Yi Liao, and
Alex K.-Y. Jen, Advanced Materials, 2014, 26(37), 6454–6460.
[46] Qi Chen, Nicholas De Marco, Yang (Michael) Yang, Tze-Bin Song, Chun-Chao Chen, Hongxiang Zhao, Ziruo Hong, Huanping Zhou, and Yang Yang, Nano Today, 2015,
10(3), 355 – 396.
[47] Eran Edri, Saar Kirmayer, Michael Kulbak, Gary Hodes, and David Cahen, The Journal of Physical Chemistry Letters, 2014, 5(3), 429–433, PMID: 26276587.
[48] Eran Edri, Saar Kirmayer, David Cahen, and Gary Hodes, The Journal of Physical
Chemistry Letters, 2013, 4(6), 897–902, PMID: 26291353.
[49] Belen Suarez, Victoria Gonzalez-Pedro, Teresa S. Ripolles, Rafael S. Sanchez, Luis
Otero, and Ivan Mora-Sero, The Journal of Physical Chemistry Letters, 2014, 5(10),
1628–1635, PMID: 26270357.
[50] Jin Hyuck Heo, Dae Ho Song, and Sang Hyuk Im, Advanced Materials, 2014, 26(48),8179–8183.
[51] Pablo Docampo, Fabian C. Hanusch, Samuel D. Stranks, Markus Dblinger, Johann M.Feckl, Martin Ehrensperger, Norma K. Minar, Michael B. Johnston, Henry J. Snaith,
and Thomas Bein, Advanced Energy Materials, 2014, 4(14), n/a–n/a, 1400355.
[52] Zhongmin Zhou, Zaiwei Wang, Yuanyuan Zhou, Shuping Pang, Dong Wang, Hongxia Xu, Zhihong Liu, Nitin P. Padture, and Guanglei Cui, Angewandte Chemie International Edition, 2015, 54(33), 9705–9709.
[53] Ziyong Cheng and Jun Lin, CrystEngComm, 2010, 12, 2646–2662.
[54] Ian C. Smith, Eric T. Hoke, Diego Solis-Ibarra, Michael D. McGehee, and Hemamala I. Karunadasa, Angew. Chem, 2014, 53(42), 11232–11235.
[55] Pablo P. Boix, Shweta Agarwala, Teck Ming Koh, Nripan Mathews, and Subodh G.
Mhaisalkar, The Journal of Physical Chemistry Letters, 2015, 6(5), 898–907, PMID:
26262670.
[56] J. C. Speakman J. A. A. Mokuolu, Chem. Commun, 1966, 25.
[57] M. Onyszchuk A. D. Baranyi, R. Makhija, Canad. J. Chem, 1976, 54, 1189.
[58] Qifeng Han, Sang-Hoon Bae, Pengyu Sun, Yao-Tsung Hsieh, Yang (Michael) Yang,
You Seung Rim, Hongxiang Zhao, Qi Chen, Wangzhou Shi,