研究生: |
洪君樺 Hung, Chun-hwa |
---|---|
論文名稱: |
探討在S1C高度表達的細胞中Stat5異常活化的機轉 The study of mechanisms underlying aberrant Stat5 activation in S1C-overexpressing cells |
指導教授: |
蔣輯武
Chiang, Chi-wu 蘇五洲 Su, Wu-chou |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | Stat5蛋白 、Stat1蛋白 、干擾素-丙 |
外文關鍵詞: | Stat1, Stat5, Interferon-γ |
相關次數: | 點閱:112 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
STATs 蛋白是細胞內一群能被多種細胞激素、賀爾蒙,以及生長因子所活化的轉錄因子。在STAT蛋白家族中,STAT3經常被報導跟人類惡性腫瘤相關,以及參與腫瘤細胞的生存以及他們對動物體免疫系統。相對地,STAT1蛋白則能夠促進腫瘤細胞的細胞凋亡,也能夠引起動物體免疫系統對腫瘤細胞的免疫反應。在之前的研究中,我們將活化態的STAT1蛋白(S1C,由cysteine去取代SH2 domain中的arginine-656和asparagine-658這兩個氨基酸所構成,能夠自發性地在細胞中形成STAT1雙體,並且不需細胞激素刺激即具有轉錄因子的活性,能進行基因調控) 轉染至老鼠的Lewis氏肺癌細胞 (一種STAT3處於高度活化態的化學藥物誘導生成的自發性癌細胞)中,製造出了LL2/S1C穩定細胞株。另外,我們也將單體的STAT1蛋白轉染至LL2細胞中,製造出能夠穩定高度表達STAT1蛋白單體的穩定細胞株。由於一般在動物體內,STAT1蛋白是由interferon-γ 所活化,因此我們給予這細胞interferon-γ的刺激,觀察STAT1蛋白和STAT3蛋白在此細胞株中如何進行交互作用,進而影響其在動物體內的免疫反應。有趣的是,我們偶然發現這樣的刺激會引起STAT5蛋白的異常活化。一般認為STAT蛋白的活化是有受體專一性的:不同細胞激素或是賀爾蒙受體會經由其在細胞內N端附近的氨基酸去選擇特定的STAT蛋白進行活化以及下游的基因調控。然而這樣的機制無法全然解釋何以STAT5蛋白在LL2/S1C 細胞中被interferon-γ 異常地活化。JAK-STAT這條訊息傳遞路徑主要可以被三個家族的負回饋調控因子所調控,他們分別是:suppressor of cytokine signaling (SOCS) protein,the protein inhibitors of activated STAT (PIAS) 以及數種 protein tyrosine phosphatases (PTPs)。為了瞭解這些調控因子是否參與STAT5的異常活化現象,我們利用西方點漬法去分析他們在蛋白質層級上的變化。SOCS1,SOCS3,PIAS1,PIAS3,以及SHP2蛋白們的表達量變化,在LL2/S1C細胞和293T/S1C 細胞中都很難全然解釋何以STAT5蛋白能夠被interferon-γ 所異常活化。另外,我們也檢視了這條活化路徑的上游,也就是在訊息傳遞剛開始的位置:JAK2 激酶以及 interferon-γ 受體在蛋白層級上的變化。然而他們的變化似乎也難以解釋STAT5蛋白的異常活化現象。因此,我們懷疑S1C 這個活化態的蛋白會去刺激未知JAK-STAT調控因子的表達,進而影響STAT5蛋白的活性。為找尋未知的調控因子,我們利用免疫沈澱法將LL2/S1C細胞中的STAT1蛋白沈澱出來,並且利用液相層析質譜分析儀去辨識這所有跟STAT1蛋白有交互作用的蛋白質。經由序列分析,我們共定到138個蛋白質。他們依功能跟所參與的細胞事件,能被分成許多種類;由此我們也得知:STAT1蛋白參與了許多細胞的生理事件的調控。在這些蛋白中,我們懷疑Asb-1可能是我們所要找的未知調控因子。Asb-1蛋白含有SOCS box。目前已知SOCS box能夠跟其他含有SOCS box的蛋白進行交互作用,也能跟elongin B和elongin C進行交互作用,將蛋白質帶向proteosome進行降解。我們利用西方點漬法發現在293T/S1C細胞中,Asb-1蛋白的表現量跟STAT5蛋白的活化狀態有發生時間上的相關性。未來我們仍需要更多的實驗去證明Asb-1能夠調控JAK-STAT 這條訊息傳遞路徑。
STATs are a family of transcription factors that activated by a variety of cytokines, hormones, and growth factors. Among them, STAT3 is frequently activated in many human carcinomas and implicated in promoting tumor cell survival and immune evasion. On the contrary, STAT1 is known to promote tumor cell apoptosis and activate immune responses. In previous study, we generated LL2/S1C cells by transfecting mouse Lewis lung carcinoma (LL2) cells (in which STAT3 is constitutively activated) with S1C (an active form of STAT1, generated by substituting Cys residues of both Arg-656 and Asn-658 within the STAT1 SH2 domain) to see how STAT1 and STAT3 cooperatively regulate tumor immune responses. Also we generated LL2/S1 cells which stably expressed free form STAT1 protein. STAT1 is the predominant STAT activated by IFN-γ. Interestingly, we found that IFN-γ aberrantly activated STAT5 in S1C-overexpressing cells, as well as in some S1-overexpressing cells. It is believed that activation of STATs is relatively ligand-specific, but this concept can not explain how IFN-γ causes the aberrant STAT5 activation in LL2/S1C cells. The JAK-STAT signaling pathway is modulated mainly by three families of proteins, including the suppressor of cytokine signaling (SOCS) protein, the protein inhibitors of activated STAT (PIAS) and various protein tyrosine phosphatases (PTPs). To elucidate why IFN-γ induces STAT5 activation, we screened changes in protein expression or activation status of those regulators by western blot. The expression of SOCS1, SOCS3, PIAS1, PIAS3, and SHP2 proteins in LL2/S1C, LL2/S1, 293T/S1C, and 293T/S1 cells could not entirely and consistently account for the aberrant STAT5 activation. Also, changes in Jak2 (Janus kinase 2, the main kinase responsible for Stat5 phosphorylation) and IFNGR (interferon-γ receptor alpha chain) correlated poorly with aberrant STAT5 phosphorylation. Therefore, we speculated that (an) unknown protein(s) in S1C-overexpressing cells may mediate the aberrant STAT5 activation. STAT1 proteins in LL2/S1C cells were immunoprecipitated. The product was separated by one-dimensional SDS-PAGE, digested by trypsin, and analyzed by LC-MS/MS to identify unknown STAT1-associated protein(s). Data acquired from LC-MS/MS were analyzed by MASCOT software. To avoid signals of LC-MS/MS being interfered by immunoglobulin fragments in the immunoprecipitated products, we conducted the experiments with dimethylpimelimidate (DMP)- crosslinking immunoprecipitation procedure as well as using Pierce Seize X kit to get rid of antibody fragments from the immunoprecipitated complex. 138 proteins which participate in diverse cellular biological processes were identified. Among them, we deduced that the SOCS box-containing protein, Asb-1, could probably be a novel regulator of JAK-STAT pathway. SOCS box can recruit other SOCS box-containing proteins and interact with elongins BC complex to form E3 ubiquitin ligase core complex. Protein expression level of Asb-1 was correlated with the IFN-γ-induced aberrant STAT5 phosphorylation in 293T/S1C cell. Therefore, we supposed that Asb-1 could possibly be a novel regulator of JAK-STAT signaling pathway.
Akira S (2000) Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19: 2707-2611.
Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71.
Aoki, N. & Matsuda, T. (2000) A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin-activated STAT5a and STAT5b. J. Biol. Chem. 275:39718–39726.
Aravind, L. & Koonin, E. V. (2000) SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 25: 112–114.
Arora, T. et al. (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem. 278:21327–21330.
Babon, J. J. et al. (2006) The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol. Cell 22:205–216.
Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563-591.
Beatty GL, paterson Y (2000) IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J. Immunol. 165: 5502-5508.
Benjamin T. Kile, Donald Metcalf, Sandra Mifsud, Ladina Dirago, Nicos A. Nicola, Douglas J. Hilton, and Warren S. Alexander (2001) Functional Analysis of Asb-1 Using Genetic Modification in Mice. Mol. Cell Biol. 21:6189-6197.
Bergamin, E., Wu, J. & Hubbard, S. R. (2006) Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Structure 14:1285–1292.
Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E. (2001) Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia. 15:1923-1931.
Boris Kovacic, Dagmar Stoiber, Richard Moriggl, Eva Weisz, Rene´ G. Ott, Rita Kreibich, David E. Levy, Hartmut Beug, Michael Freissmuth, and Veronika Sexl. (2006) STAT1 acts as a tumor promoter in leukemia development. CancerCell. 10:77–87.
Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474-2488.
Briscoe J, Kohlhuber F, Muller M (1996) JAKs and STATs branch out. Trends Cell. Biol. 6:336-340.
Bromberg J (2002) Stat proteins and oncogenesis. J. Clin. Invest. 109: 1139-1142
Bromberg J, Darnell JE Jr. (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19:2468-2473.
Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE, Jr. (1996) Transcriptionally active STAT1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc. Natl. Acad. Sci. USA 93:7673-7678.
Bromberg JF, Horvath CM, Vesser D, Lathem WW, Darnell JE, Jr. (1998) Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Viol. 18:2553-2558.
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. (1999) Stat3 as an oncogene. Cell 98:295-303.
Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer. Res. 8:945-954.
Bullock, A. N., Debreczeni, J. E., Edwards, A. M., Sundstrom, M. & Knapp, S. (2006) Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc. Natl Acad. Sci. USA. 103:7637–7642.
Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A (2003) STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell. Physiol. 197:157-168.
Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105-115.
Cheng F, Wang HW, Cueca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schornberger SP, Yu H, Jove R, Sotomayor EM (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19:425-436.
Chen, X. P. et al. (2002) Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc. Natl Acad. Sci. USA. 99:2175–2180.
Chen, Y. et al. (2003) Identification of Shp-2 as a Stat5A phosphatase. J. Biol. Chem. 278:16520–16527.
Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY (1996) Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272:719-722.
Choudhury GG, Ghosh-Choudhury N, Abboud HE (1998) Association and direct activation of signal transducer and activator of transcription 1 alpha by platelet-derived growth factor receptor. J. Clin. Invest. 101:2751-2760.
Chung, C. D. et al. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805.
Chughtai, N., Schimchowitsch, S., Lebrun, J. J. & Ali, S. (2002) Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the β-casein gene promoter in mammary cells. J. Biol. Chem. 277:31107–31114.
Danial NN, Rothman P (2000) JAK-STAT signaling activated by Abl oncogenes. Oncogene 19:2523-2531.
Darnell JE, Jr. (1997) STATs and gene regulation. Science 277:1630-1635.
David, M., Grimley, P. M., Finbloom, D. S. & Larner, A. C. (1993) A nuclear tyrosine phosphatase downregulates interferon-induced gene expression. Mol. Cell. Biol. 13:7515–7521.
Dubin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443-450.
Duval, D., Duval, G., Kedinger, C., Poch, O. & Boeuf, H. (2003) The ‘PINIT’ motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett. 554:111–118.
Endo, T. A. et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921–924.
Eriksen KW, Kaltoft K, Mikkelsen G, et al. (2001) Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin- 2 receptor expression and growth of leukemic Sezary cells. Leukemia. 15:787-793.
F. Schaper, C. Gendo, M. Eck, J. Schmitz, C. Grimm, D. Anhuf, I. M. Kerr and P. C. Heinrich (1998) Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression. Biochem. J., 335:557–565.
Ferenc A Scheeren, Marianne Naspetti, Sean Diehl, Remko Schotte, Maho Nagasawa, Erin Wijnands, Ramon Gimeno, Florry A Vyth-Dreese, Bianca Blom, Hergen Spits (2005) STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nature immunology 6:303–313
Flowers, L. O. et al. (2004) Characterization of a peptide inhibitor of Janus kinase 2 that mimics suppressor of cytokine signaling 1 function. J. Immunol. 172: 7510–7518.
Frassanito MA, Cusmai A, Iodice G, Dammacco F (2001) Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97: 483-489.
Garcia R, Yu CL, Hudnall A, Catlett R, Nelson KL, Smithgall T, Fujita DJ, Ethier SP, Jove R (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cell. Cell Growth Differ. 8:1267-1276.
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499-2513.
Glass, C. K. & Rosenfeld, M. G. (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14: 121–141.
Gouilliux-Gruart V, Gouilliux F, Desaint C, Claisse JF, Capiod JC, Delobel J, Weber-Nordt R, Dusanter-Fourt I, Dreyfus F, Groner B, Prin L (1996) STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87: 1692-1697.
Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J. Clin. Invest. 102:1385-1392.
Haspel, R. L. & Darnell, J. E., Jr. (1999) A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl Acad. Sci. USA 96:10188–10193.
Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733–736.
Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem. J. 265:621-636.
Hilton, D. J. et al. (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl Acad. Sci. USA 95:114–119.
Hirano T (1991) Interleukin-6 (IL-6) and its receptor: their role in plasma cell neoplasias. Int. J. Cell Cloning 9:166-184.
Hirano T (1998) Inerleukin-6 and its receptor: ten years later. Int. Rev. Imunol. 16:249-284.
Hirano T, Ishihara K, Hibi M (2000) Roles of Stat3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548-2556.
Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kawhiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al. (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324: 73-76.
Horvath CM (2000) STAT proteins and transcriptional responses to extracellular signals. Trends Biochem. Sci. 25:496-502.
Horvath CM, Wen Z, Darnell JE, Jr. (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev.
9: 984-994.
Hung W, Elliott B (2001) Co-operative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells.
J. Biol. Chem. 276: 12395-12403.
Hu, X. & Lazar, M. A. (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402: 93–96.
Hwa V, Little B, Kofoed EM, Rosenfeld RG (2004) Transcriptional regulation of insulin-like growth factor-I by interferon-gamma requires STAT5b. J. Boil. Chem. 279: 2728-2736.
Ihle J, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11:69-74.
Ilaria RL Jr, Hawley RG, Van Etten RA. (1999) Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood. 93:4154-4166.
JH Gutzman, DE Rugowski, SE Nikolai and LA Schuler (2007) STAT5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene 26:6341–6348.
Jackson, P. K. (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 15, 3053–3058.
Joazeiro, C. A. & Weissman, A. M. (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552.
Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.
J. ten Hoeve, J. et al. (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22:5662–5668.
Kagami, S.-i, Nakajima, H., Kumano, K., Suzuki, K., Suto, A., Imada, K., Davey, H.W., Saito, Y., Takatsu, K., Leonard, W.J., Iwamoto, I. (2000) Both Stat5a and Stat5b are required for anti- gen-induced eosinophil and T cell recruitment into the tissue. Blood 95:1370-1377.
Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 149:1-38.
Kamura, T., S. Sato, D. Haque, L. Liu, W. G. Kaelin, Jr., R. C. Conaway, and J. W. Conaway. (1998) The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12:3872–3881.
Kamura, T. et al. (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2–Rbx1 and Cul5–Rbx2 modules of ubiquitin ligases. Genes Dev. 18:3055–3065.
Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon-gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95: 7556-7561.
Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, et al. (1998) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83-85.
Kelly SA, Gschmeissner S, East N, Balkwill FR (1991) Enhancement of metastatic potential by gamma-interferon. Cancer Res. 51:4020-4027.
Kerr IM, Costa-Pereira AP, Lillemeier BF, Strobl B (2003) Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett. 546:1-5.
Kieslinger M, Woldman I, Moriggl R, et al. (2000) Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 14:232-244.
Kile, B. T., E. M. Viney, T. A. Willson, T. C. Brodnicki, M. R. Cancilla, A. S. Herlihy, B. A. Croker, M. Baca, N. A. Nicola, D. J. Hilton, and W. S. Alexander. (2000) Cloning and characterisation of the genes encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4. Gene 258:31–41.
Kipp, M. et al. (2000) SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol. Cell. Biol. 20, 7480–7489.
Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863-872.
Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL. (2000) Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. J. Immunol. 165:5097-5104.
Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22:5222–5234.
Kubo, M., Hanada, T. & Yoshimura, A. (2003) Suppressors of cytokine signaling and immunity. Nature Immunol. 4:1169–1176.
Kumar A, Commane M, Flickinger TW, Horvath CM, Statk GR (1997) Defective TNF-alpha-induced apoptosis in STAT1-mull cells due to low constitutive levels of caspases. Science 278:1630-1632.
Le poole IC, Riker AI, Quevedo ME, Stennett LS, Wang E, Marincola FM, Kast WM, Rovinson JK, Nicholoff BJ (2002) Interferon-gamma reduces melanosomal antigen expression and recognition of melanoma cells by cytotoxic T cells. Am. J. Pathol. 160:521-528.
Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, DePinho RA, Levy DE (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17:63-72.
Levy DE, Darnell JE, Jr. (2002) Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell. Biol. 3:651-662.
Liao, J., Fu, Y. & Shuai, K. (2000) Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT)1 (PIAS1) in cytokine-induced PIAS1–Stat1 interaction. Proc. Natl Acad. Sci. USA 97:5267–5272.
Liu, B. et al. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl Acad. Sci. USA 95:10626–10631.
Liu, B., Gross, M., ten Hoeve, J. & Shuai, K. (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. USA 98:
3203–3207.
Loinder, K. & Soderstrom, M. (2004) Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). J. Steroid Biochem. Mol. Biol. 91: 191–196
Lord JD, McIntosh BC, Greengerg PD, Nelson BH, (2000) The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-xl genes through the trans-activation domain of Stat5. J. Immunol. 164:2633-2541.
Lou W, I Z, Dyer K, Tweardy DJ, Gao AC (2000) Interleukin-6 induces prostate cancer cell growth accompanied by activation of Stat3 signaling pathway. Prostate 42:239-242.
M. You, D. H. Yu and G. S. Feng (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol., 19: 2416–2424.
Meinke A, Barahmand-Pour F, Wohrl S, Stoiber D, Decher T (1996) Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to intererons. Mol. Cell Biol. 16:6937-6944.
Migone TS, Lin JX, Cereseto A, et al. (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79- 81.
Miles SA, Rezai AR, Salazar-Gonzalez JF, Vander Meyden M, Stevens RH, Logan DM, Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, et al. (1990) AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc. Natl. Adad. Sci. USA 87: 4068-4072.
Minty, A., Dumont, X., Kaghad, M. & Caput, D. (2000) Covalent modification of p73α by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275:36316–36323.
Molnar EL, Hegyesi H, Toth S, Darvas Z, Laszlo V, Szalai C, Falus A (2000) Biosynhesis of interleukin-6, an autocrine growth factor for melanoma, is regulated by melanoma-derived histamine. Seminar Cancer Biol. 10:25-28.
Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R (2002) Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 62:6659-6666.
Naka, T. et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924–929.
Nelson KL, Rogers JA, Bowman TL, Jove R, Smithgall TE (1998) Activation of STAT3 by the c-Fes protein-tyrosine kinase. J. Biol. Chem. 273:7072-7022.
Nemetz C, Hocke GM. (1998) Transcription factor STAT5 is an early marker of differentiation of murine embryonic stem cells. Differentiation.62:213- 220.
Nieborowska-Skorska M, Wasik MA, Slupianek A, et al. (1999) Signal transducer and activator of transcription (STAT)5 activation by Bcr-Abl is dependent on intact Src homology (SH)3 and SH2 domains of Bcr-Abl and is required for leukemogenesis. J. Exp. Med. 189:1229-1242.
Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21:7001-7010.
Nosaka T, Kawashima T, Misawa K, et al. (1999) STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 18:4754-4765.
P. D. Simoncic, A. Lee-Loy, D. L. Barber, M. L. Tremblay and C. J. McGlade (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol. 12:446–453.
Park OK, Schaefer TS, Nathans D (1996) In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. USA 93:13704-13708.
Peltola, K. J. et al. (2004) Pim-1 kinase inhibits STAT5- dependent transcription via its interactions with SOCS1 and SOCS3. Blood 103:3744–3750.
Qing, Y., Costa-Pereira, A. P., Watling, D. & Stark, G. R. (2005) Role of tyrosine 441 of interferon-γ receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation. J. Biol. Chem. 280:1849–1853.
Rane SG, Reddy EP (2002) JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21:3334-3358.
Ripperger JA, Fritz S, Richter K, Hocke GM, Lottspeich F, Fey GH. (1995) Transcription factors STAT3 and STAT5b are present in rat liver nuclei late in an acute phase response and bind interleukin- 6 response elements. J. Biol. Chem. 270:29998-30006.
Sachdev, S. et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103.
Sano S, Takahama Y, Sugawara T, Kosaka H, Itami S, Yoshikawa K, Miyazaki J, van Ewijk W, Takeda J (2001) Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15:261-273.
Sasaki, A. et al. (2003) The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J. Biol. Chem. 278:2432–2436.
Sasaki, A. et al. (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem. 275:29338–29347.
Schindler C, Darnell JE, Jr. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651.
Schindler CW (2002) Series introduction: JAK-STAT signaling in human diseases. J Clin. Invest. 109:1133-1137.
Schmidt, D. & Muller, S. (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell. Mol. Life Sci. 60, 2561–2574.
Seidel HM, Milocco LH, Lamb P, Darnell JE, Jr., Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc. Natl. Acad. Sci. USA 92:3041-3045.
Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 12:33-40.
Song JI, Grandis JR (2000) STAT signaling in head and neck cancer. Oncogene 19:2489-2495.
Song L, Turkson J, Karras JG, Jove R, Haura EB (2003) Activation of Stat3 by receptor tyrosine kinase and cytokines regulates survival in human non-small cell lung carcinoma cells. Oncogene 22:4105-4165.
Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu. Rev. Biochem. 67:227-264.
Starr, R., T. A. Willson, E. M. Viney, L. J. Murray, J. R. Rayner, B. J. Jenkins, T. J. Gonda, W. S. Alexander, D. Metcalf, N. A. Nicola, and D. J. Hilton. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921.
Starr, R. & Hilton, D. (1999) Negative regulation of the JAK/STAT pathway. Bioessays 21:47–52.
Starr, R. et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921.
Shuai, K. & Liu, B. (2003) Regulation of JAK–STAT signalling in the immune system. Nature Rev. Immunol. 3, 900–911.
Shuai, K. (1999) The STAT family of proteins in cytokine signaling. Prog. Biophys. Mol. Biol. 71, 405–422.
Shuai, K. (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19, 2638–2644.
T. R. Wu, Y. K. Hong, X. D. Wang, M. Y. Ling, A. M. Dragoi, A. S. Chung, A. G. Campbell, Z. Y. Han, G. S. Feng and Y. E. Chin (2002) SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J. Biol. Chem., 277:47572–47580.
Takemoto S, Mulloy JC, Cereseto A, et al. (1997) Proliferation of adult T cell leukemia/ lymphoma cells is associated with the constitutive activation of JAK/ STAT proteins. Proc. Natl. Acad. Sci. U S A 94:13897-13902.
Taniguchi K, Petersson M, Hoglund P, Kiessling R, Klein G, Karre K (1987) Interferon gamma induces lung colonization by intravenously inoculated B16 nelanoma cells in parallel with enhance expression of class I majou histocompatibility complex antigens. Proc. Natl. Acad. Sci. USA 84:3405-3409.
Teranishi T, Hirano T, Arima N, Onoue K (1982) Human helper T cell factor(s) (ThF). II. Induction of IgG production in B lymphoblastoid cell lines and identification of T cell-replacing factor- (TRF) like factor(s). J. Immunol 128:1903-1908.
Tussie-Luna, M. I., Bayarsaihan, D., Seto, E., Ruddle, F. H. & Roy, A. L. (2002) Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxβ. Proc. Natl Acad. Sci. USA 99:12807–12812.
Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R (1998) Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell Biol. 18:2545-2552.
U. Lehmann, J. Schmitz, M. Weissenbach, R. M. Sobota, M. Hortner, K. Friederichs, I. Behrmann, W. Tsiaris, A. Sasaki, J. Schneider-Mergener, A. Yoshimura, B. G. Neel, P. C. Heinrich and F. Schaper, (2003) J. Biol. Chem., 278:661–671.
Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277: 7076-7085.
Vignais ML, Gilman M (1999) Distinct mechanisms of activation of Stat1 and Stat3 by platelet-derived growth factor receptor in a cell-free system. Mol. Cell Biol. 19:3727-37375.
Vuong, B. Q. et al. (2004) SOCS-1 localizes to the microtubuleorganizing complex- associated 20S proteasome. Mol.Cell. Biol. 24:9092–9101.
Waiboci, L. W. et al. (2007) Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J. Immunol. 178:5058–5068.
Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10:48-54.
Warren S. Alexander. (2002) Suppressors of cytokine signalling (SOCS) in the mmune system. Nat. Rev. Immunol. 2:1-7.
Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R, Finke J (1996) Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88:809-816.
Wegenka UM, Buschmann J, Luttichen C, Heinrich PC, Horn F (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell Biol. 13:276-288.
Wegenka UM, Lutticken C, Buschmann J, Yuan J, Lottspeich F, Muller-Esterl W, Schrindler C, Roeb E, Heinrich PC, Horn F (1994) The interleukin-6-activated acute-phase response factor is antigenically and functionall related to members of the signal transducer and activator of transcription (STAT) family. Mol. Cell. Biol. 14:3186-3196.
Woldman I, Varinou L, Ramsauer K, Rapp B, Decher T (2001) The Stat1 binding motif of the interferon-gamma receptor is sufficient to mediate Stat5 activation and its repression by SOCS3. J. Biol. Chem. 276:45722-45728.
Wong, K. A. et al. (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol. Cell. Biol. 24:5577–5586.
Wu, T. R. et al. (2002) SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J. Biol. Chem. 277:47572–47580.
Xu-Yu Yang, Cai-Ping Ren, LeiWang, Hui Li, Chun-Jie Jiang, Hong-Bo Zhang, Ming Zhao and Kai-Tai Yao, (2005) Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cellular Oncology 27:215–223.
Y. Chen, R. Wen, S. Yang, J. Schuman, E. E. Zhang, T. Yi, G. S. Feng and D. Wang (2003) Identification of Shp-2 as a Stat5A phosphatase. J. Biol. Chem., 278:16520–16527.
Yamamoto, K., Yamaguchi, M., Miyasaka, N. & Miura, O. (2003) SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor β2 subunit. Biochem. Biophys. Res. Commun. 310:1188–1193.
Yi-Wen Chu, Pan-Chyr Yang, Shuenn-Chen Yang, Yu-Chiau Shyu, Mary J. C. Hendrix, Reen Wu, and Cheng-Wen Wu (1997) Selection of ivasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol. 17:353–360.
Zhang, J. G., A. Farley, S. E. Nicholson, T. A. Willson, L. M. Zugaro, R. J. Simpson, R. L. Moritz, D. Cary, R. Richardson, G. Hausmann, B. T. Kile, S. B. Kent, W. S. Alexander, D. Metcalf, D. J. Hilton, N. A. Nicola, and M. Baca. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96:2071–2076.
Zhang Q, Nowak I, Vonderheid EC, et al. (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin-2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl. Acad. Sci. U S A. 93:9148-9153.
Zhengju Yao, Yongzhi Cui, Wendy T. Watford, Jay H. Bream, Kunihiro Yamaoka, Bruce D., Hissong, Denise Li, Scott K. Durum, Qiong Jiang, Avinash Bhandoola, Lothar Hennighausen, and John J. O'Shea, (2006) Stat5a/b are essential for normal lymphoid development and differentiation Proc. Natl. Acad. Sci. USA 103:1000-1005.
Zhou MY, Zeng Q, Drenning SD, Grandis R. (1999) Differential activation of STAT5 isoforms and growth control in head and neck cancer [abstract]. Proc. Am. Assoc. Cancer Res. 40:335.