| 研究生: |
張詠琳 Chang, Yung-Lin |
|---|---|
| 論文名稱: |
探討聚電解質在氧化石墨烯薄膜之滲透能源轉換 Investigation of Polyelectrolytes in Graphene Oxide Membranes for Osmotic Energy Conversion |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 二維材料 、氧化石墨烯 、聚電解質 、聚苯乙烯磺酸 、反向電滲析 、滲透能 、離子選擇性 、藍色能源 |
| 外文關鍵詞: | Two-dimensional materials, Graphene oxide, Polyelectrolytes, Polystyrene sulfonic acid, Reverse electrodialysis, Osmotic energy, Ion selectivity, Blue energy |
| 相關次數: | 點閱:91 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,能源短缺已成為全球面臨的重大問題,為了有效減緩地球環境的破壞,開發可再生能源已是當務之急。基於可再生能源的發電,滲透能源的能量轉換引起人們極大的興趣。本文聚焦於氧化石墨烯(GO)和聚電解質複合材料的開發,探討其在滲透能源領域的應用潛力。值得注意的是聚苯乙烯磺酸(PSS)的主鏈結構,有助於形成更好的離子選擇性通道及能量輸出,在層通道中,電解質的流動與帶負電的GO-PSS結構介面處與電雙層(EDL)交疊綜合作用下,反向離子(即Na+)即容易被吸引製薄膜的層間距上,從而形成電壓即電流。進而使氧化石墨烯薄膜提升達70 % 的功率密度,並在高濃度條件下實現較高的能源轉換效率。也藉由數值模擬與實驗研究了PSS的重量百分比對複合薄膜性能貢獻,透過添加聚電解質成功增加GO通道內的電荷密度,揭示了奈米通道內電荷分佈對滲透能源的重要影響,為GO-PSS複合材料廣泛應用前景提供了有力支持。此研究結果為開發可持續能源和解決能源問題提供新的可能性。
In recent years, the global energy shortage has emerged as a paramount concern, prompting the urgent need to develop renewable energy sources to mitigate environmental degradation effectively. This paper explores graphene oxide (GO) and polyelectrolyte composites, focusing on their potential applications in osmotic energy. The study emphasizes the importance of the main chain structure of polystyrene sulfonic acid (PSS) in facilitating the generation of enhanced ion selective channels and augmenting energy output. Within the nanochannel, an overlapped electrical double layer (EDL) at the interface between the electrolyte and the negatively charged GO-PSS structural interface at the electric double layer (EDL), and the counter ions (i.e., Na+) are readily attracted to the interlayer spacing of the membranes, resulting in the formation of voltages and currents. This leads to a notable 70% enhancement in the power density of graphene oxide membranes and achieving elevated energy conversion efficiency under high concentration conditions. Numerical simulations and experimental studies have been conducted to examine the influence of the PSS mass ratio on composite membranes' properties. The successful incorporation of polyelectrolytes has significantly increased the charge density within GO channels, unveiling the pivotal impact of charge distribution on osmotic energy. This research robustly supports the extensive utilization prospects of composite GO-PSS membranes. The conclusions drawn from this study provide innovative avenues for advancing sustainable energy development and effectively tackling energy-related challenges.
[1] Omid Mahian, Ali Kianifar, Soteris A Kalogirou, Ioan Pop, and Somchai Wongwises, A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 2013. 57(2): p. 582-594.
[2] Thomas Ackermann and Lennart Söder, Wind energy technology and current status: a review. Renewable and sustainable energy reviews, 2000. 4(4): p. 315-374.
[3] Enrico Barbier, Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews, 2002. 6(1-2): p. 3-65.
[4] Günther Fischer and Leo Schrattenholzer, Global bioenergy potentials through 2050. Biomass and bioenergy, 2001. 20(3): p. 151-159.
[5] Zhongying Wang and Baoxia Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental science & technology, 2017. 51(15): p. 8229-8244.
[6] Mengchen Zhang, Kecheng Guan, Yufan Ji, Gongping Liu, Wanqin Jin, and Nanping Xu, Controllable ion transport by surface-charged graphene oxide membrane. Nature communications, 2019. 10(1): p. 1253.
[7] Shuangmei Xue, Chenhao Ji, Matthew D Kowal, Jenna C Molas, Cheng-Wei Lin, Brian T McVerry, Christopher L Turner, Wai H Mak, Mackenzie Anderson, and Mit Muni, Nanostructured graphene oxide composite membranes with ultrapermeability and mechanical robustness. Nano letters, 2020. 20(4): p. 2209-2218.
[8] Van-Phung Mai, Wei-Hao Huang, Yong-Lin Chang, and Ruey-Jen Yang, Composite GO@ Silk membrane for capillary-driven energy conversion. Journal of Membrane Science, 2023: p. 121403.
[9] Van-Phung Mai and Ruey-Jen Yang, Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Applied Energy, 2020. 274: p. 115294.
[10] Van-Phung Mai and Ruey-Jen Yang, Active control of salinity-based power generation in nanopores using thermal and pH effects. RSC advances, 2020. 10(32): p. 18624-18631.
[11] Elvin Aliyev, Volkan Filiz, Muntazim M Khan, Young Joo Lee, Clarissa Abetz, and Volker Abetz, Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 2019. 9(8): p. 1180.
[12] William S Hummers Jr and Richard E Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
[13] Huitao Yu, Bangwen Zhang, Chaoke Bulin, Ruihong Li, and Ruiguang Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Scientific reports, 2016. 6(1): p. 36143.
[14] Larisa-Maria Petrila, Florin Bucatariu, Marcela Mihai, and Carmen Teodosiu, Polyelectrolyte multilayers: An overview on fabrication, properties, and biomedical and environmental applications. Materials, 2021. 14(15): p. 4152.
[15] John Kwame Bediako, Emile Salomon Massima Mouele, Youssef El Ouardi, and Eveliina Repo, Saloplastics and the polyelectrolyte complex continuum: advances, challenges and prospects. Chemical Engineering Journal, 2023: p. 142322.
[16] Jung Hwa Seo, Andrea Gutacker, Yanming Sun, Hongbin Wu, Fei Huang, Yong Cao, Ullrich Scherf, Alan J Heeger, and Guillermo C Bazan, Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011. 133(22): p. 8416-8419.
[17] Claire S Peyratout and Lars Daehne, Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers. Angewandte Chemie International Edition, 2004. 43(29): p. 3762-3783.
[18] Bruno G De Geest, Stefaan De Koker, Gleb B Sukhorukov, Oliver Kreft, Wolfgang J Parak, Andrei G Skirtach, Jo Demeester, Stefaan C De Smedt, and Wim E Hennink, Polyelectrolyte microcapsules for biomedical applications. Soft Matter, 2009. 5(2): p. 282-291.
[19] Siqi Qi, Min Lin, Pengfei Qi, Junjie Shi, Ge Song, Wenxin Fan, Kunyan Sui, and Congjie Gao, Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. Chemical Engineering Journal, 2022. 444: p. 136541.
[20] Jian Zeng, Qingyang Wang, Yang Shi, Ping Liu, and Renkun Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Advanced Energy Materials, 2019. 9(38): p. 1900552.
[21] Claire S Peyratout and Lars Dähne, Tailor‐made polyelectrolyte microcapsules: from multilayers to smart containers. Angewandte Chemie International Edition, 2004. 43(29): p. 3762-3783.
[22] Jingrong Yu, Baolian Yi, Danmin Xing, Fuqiang Liu, Zhigang Shao, Yongzhu Fu, and Huamin Zhang, Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. Physical Chemistry Chemical Physics, 2003. 5(3): p. 611-615.
[23] M Selva Kumar and D Krishna Bhat, Polyvinyl alcohol–polystyrene sulphonic acid blend electrolyte for supercapacitor application. Physica B: Condensed Matter, 2009. 404(8-11): p. 1143-1147.
[24] PF Siril, NR Shiju, DR Brown, and K Wilson, Optimising catalytic properties of supported sulfonic acid catalysts. Applied Catalysis A: General, 2009. 364(1-2): p. 95-100.
[25] Yang Song, Dmitry Zemlyanov, Xin Chen, Haichen Nie, Ziyang Su, Ke Fang, Xinghao Yang, Daniel Smith, Stephen Byrn, and Joseph W Lubach, Acid–base interactions of polystyrene sulfonic acid in amorphous solid dispersions using a combined UV/FTIR/XPS/ssNMR study. Molecular pharmaceutics, 2016. 13(2): p. 483-492.
[26] Andre K Geim and Konstantin S Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
[27] Ohchan Kwon, Yunkyu Choi, Eunji Choi, Minsu Kim, Yun Chul Woo, and Dae Woo Kim, Fabrication techniques for graphene oxide-based molecular separation membranes: Towards industrial application. Nanomaterials, 2021. 11(3): p. 757.
[28] Jia-Qi Huang, Ting-Zhou Zhuang, Qiang Zhang, Hong-Jie Peng, Cheng-Meng Chen, and Fei Wei, Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS nano, 2015. 9(3): p. 3002-3011.
[29] LinSheng Zhu, XiaoXin Guo, YunQiang Chen, Zhou Chen, YiHong Lan, YuBin Hong, and WeiGuang Lan, Graphene oxide composite membranes for water purification. ACS Applied Nano Materials, 2022. 5(3): p. 3643-3653.
[30] Hanaa M Hegab and Linda Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015. 484: p. 95-106.
[31] Frank HJ van der Heyden, Douwe Jan Bonthuis, Derek Stein, Christine Meyer, and Cees Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels. Nano letters, 2007. 7(4): p. 1022-1025.
[32] Ruirui Li, Jiaqiao Jiang, Qingqing Liu, Zhiqiang Xie, and Jin Zhai, Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy, 2018. 53: p. 643-649.
[33] RE Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954. 174: p. 660-660.
[34] Jaewon Jang, Yesol Kang, Ji-Hyung Han, Kyunghoon Jang, Chang-Min Kim, and In S Kim, Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 2020. 491: p. 114540.
[35] Alessandro Siria, Philippe Poncharal, Anne-Laure Biance, Rémy Fulcrand, Xavier Blase, Stephen T Purcell, and Lydéric Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 2013. 494(7438): p. 455-458.
[36] Jiandong Feng, Michael Graf, Ke Liu, Dmitry Ovchinnikov, Dumitru Dumcenco, Mohammad Heiranian, Vishal Nandigana, Narayana R Aluru, Andras Kis, and Aleksandra Radenovic, Single-layer MoS2 nanopores as nanopower generators. Nature, 2016. 536(7615): p. 197-200.
[37] Zhen Zhang, Sheng Yang, Panpan Zhang, Jian Zhang, Guangbo Chen, and Xinliang Feng, Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nature communications, 2019. 10(1): p. 2920.
[38] Dong-Kwon Kim, Chuanhua Duan, Yu-Feng Chen, and Arun Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluidics and Nanofluidics, 2010. 9: p. 1215-1224.
[39] 黃偉豪, 二維材料奈米管道薄膜應用於滲透能源轉換之探討. 2020.
[40] Reto B Schoch, Jongyoon Han, and Philippe Renaud, Transport phenomena in nanofluidics. Reviews of modern physics, 2008. 80(3): p. 839.
[41] Robert J Hunter, Zeta potential in colloid science: principles and applications. Vol. 2. 2013: Academic press.
[42] Toshihiko Jimbo, Mitsuru Higa, Minoura, Norihiko, and Akihiko Tanioka, Surface Characterization of Poly(acrylonitrile) Membranes Graft-Polymerized with Ionic Monomers As Revealed by ζ Potential Measurement. Macromolecules, 1998. 31: p. 1277-1284.
[43] Bharathi Konkena and Sukumaran Vasudevan, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements. The journal of physical chemistry letters, 2012. 3(7): p. 867-872.
[44] Yadong Wu, Teng Zhou, Yao Wang, Yongchao Qian, Weipeng Chen, Congcong Zhu, Bo Niu, Xiang-Yu Kong, Yifei Zhao, and Xiangbin Lin, The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy, 2022. 92: p. 106709.
[45] Yuanyuan Zhao, Jin Wang, Xiang-Yu Kong, Weiwen Xin, Teng Zhou, Yongchao Qian, Linsen Yang, Jinhui Pang, Lei Jiang, and Liping Wen, Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. National Science Review, 2020. 7(8): p. 1349-1359.
[46] Chih-Chang Chang, Ruey-Jen Yang, Moran Wang, Jiun-Jih Miau, and Vadim Lebiga, Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution. Physics of Fluids, 2012. 24(7): p. 072001.
[47] Derek Stein, Maarten Kruithof, and Cees Dekker, Surface-charge-governed ion transport in nanofluidic channels. Physical Review Letters, 2004. 93(3): p. 035901.
[48] Che-rong Chang, Ching-Hua Yeh, Hung-Chun Yeh, and Ruey-jen Yang. Energy conversion from salinity gradient using microchip with nafion membrane. in International Journal of Modern Physics: Conference Series. 2016. World Scientific.
[49] COMSOL Multiphysics, Introduction to COMSOL multiphysics®. COMSOL Multiphysics, Burlington, MA, accessed Feb, 1998. 9(2018): p. 32.
[50] Yanjun Fu, Xun Guo, Yihan Wang, Xinwei Wang, and Jianming Xue, An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy, 2019. 57: p. 783-790.
[51] Chen-Wei Chang, Chien-Wei Chu, Yen-Shao Su, and Li-Hsien Yeh, Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. Journal of Materials Chemistry A, 2022. 10(6): p. 2867-2875.
[52] Hung-Chun Yeh, Chih-Chang Chang, and Ruey-Jen Yang, Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation. Rsc Advances, 2014. 4(6): p. 2705-2714.
[53] Badie S Girgis, Yassin M Temerk, Mostafa M Gadelrab, and Ibrahim D Abdullah, X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon Letters (Carbon Lett.), 2007. 8(2): p. 95-100.
[54] G Surekha, K Venkata Krishnaiah, N Ravi, and R Padma Suvarna. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. in Journal of Physics: Conference Series. 2020. IOP Publishing.
[55] Yijun Qian, Dan Liu, Guoliang Yang, Jinqiu Chen, Yuxi Ma, Lifeng Wang, Xungai Wang, and Weiwei Lei, Two‐Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. ChemSusChem, 2022. 15(19): p. e202200933.
[56] F Kučera and J Jančář, Homogeneous and heterogeneous sulfonation of polymers: a review. Polymer Engineering & Science, 1998. 38(5): p. 783-792.
[57] Kalim Deshmukh, M Basheer Ahamed, Kishor Kumar Sadasivuni, Deepalekshmi Ponnamma, Mariam Al-Ali AlMaadeed, SK Khadheer Pasha, Rajendra R Deshmukh, and K Chidambaram, Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Materials Chemistry and Physics, 2017. 186: p. 188-201.
[58] Dan Li, Marc B Müller, Scott Gilje, Richard B Kaner, and Gordon G Wallace, Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology, 2008. 3(2): p. 101-105.
[59] Meng Wang, Yang Niu, Jihan Zhou, Hao Wen, Zhenyu Zhang, Da Luo, Dongliang Gao, Juan Yang, Dehai Liang, and Yan Li, The dispersion and aggregation of graphene oxide in aqueous media. Nanoscale, 2016. 8(30): p. 14587-14592.
[60] Walter J Hamer and Yung‐Chi Wu, Osmotic coefficients and mean activity coefficients of uni‐univalent electrolytes in water at 25° C. Journal of Physical and Chemical Reference Data, 1972. 1(4): p. 1047-1100.
[61] Seunghyun Hong, Charlotte Constans, Marcos Vinicius Surmani Martins, Yong Chin Seow, Juan Alfredo Guevara Carrio, and Slaven Garaj, Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano letters, 2017. 17(2): p. 728-732.