| 研究生: |
張祐綱 Jhang, You-Kang |
|---|---|
| 論文名稱: |
Hermite type之移動最小二乘法在板、梁分析上之應用 Hermite Type Moving Least Square for the analysis of beams and plates |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 無元素法 、平板理論 、移動最小二乘法 |
| 外文關鍵詞: | Hermite Type, Plates, Moving Least Square Method |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用Hermite type移動最小二乘法(Hermite type moving least square method, HMLSM)分析一維梁問題與二維古典板問題。本文透過離散點函數值建立區域近似函數,並以Hermite形式同時將近似函數及其一階導數與微分方程式和邊界條件同時以加權函數最小二乘法建立以節點值、一階導數值以及微分方程式和邊界條件之非齊次項所表達之近似函數,而後由節點值與其一階導數與近似函數函數之一致性條件即可解得節點上之變數值而得邊界值問題之近似解。本文最後以一維梁問題、長寬比1與2之古典板作為計算範例,利用數值分析得到的位移、轉角、彎矩及剪力與其解析解進行比較驗證。
In this paper, we present a Hermite type moving least square method for solving the problems of elastic beam and plate. The novelty of this approach is that, using the moving least square technique, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and it's derivatives, the governing equation and the boundary conditions. The process lead to an interpolation function which is express in terms of the nodal value of the field variable, the nodal value of it's derivatives, and the nodal value of the nonhomogeneous terms in the differential equation. According to the requirement of consistency of the interpolation function with its value at nodes, the point collocation technique was employed to determine the unknown nodal values, and so complete the process of determining an approximation solution to the given problem. Some examples include the one-dimensional beams and the two-dimensional plates under various loads are solved to examine the accuracy and the rate of convergency of this method.
參考文獻
[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis,The Astron, J.8, 12, 1013-1024 (1977).
[2] L. D. Libersky and A. G. Perschek : Smooth Particle Hydrodynamics with Strength of Materials, ed. H. E. Trease, M. J. Fritts, and W. P. Crowley(Springer Verlag), 248(1990).
[3] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element
method diffuse approximation and diffuse elements, Computational
Mechanics, 10, 307-318 (1992).
[4] T. Belytschko, L. Gu and Y. Y. Lu, Fracture and crack growth by
element-free Galerkin methods, Modeling and Simulation in Materials
Science and Engineering,2 , 519-534 (1994).
[5] W. K. Liu, S. Jun and Y. F. Zhang, Reproducing kernel particle methods,Int. J. Numerical methods Engineering, 20, 1081-1106 (1995).
[6] J. S. Chen, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 195-227. (1996).
[7] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems,
Computer Methods in Applied Mechanics & Engineering, 139, 315-346
(1996).
[8] 盛若磐, 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系, 2000.
[9] Rudolph Szilard, Dr.-Ing., PE, Theory and Analysis of Plates - Classical and Numerical Methods, 虹橋, 1974.
[10] S. N. Atluri, J. Y. Cho and H.-G. Kim, Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations in Computational Mechanics, 24, 334-347 (1999).