| 研究生: |
郭家瑋 Kuo, Chia-Wei |
|---|---|
| 論文名稱: |
有機薄膜電晶體之載子傳輸特性研究 Properties of Carriers Transportation in Organic Thin Film Transistors |
| 指導教授: |
周維揚
Chou, Wei-Yang 鄭弘隆 Cheng, Horng-Long 唐富欽 Tang, Fu-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 離子束配向 、有機薄膜電晶體 、臨場微拉曼散射 、表面能 、光配向 |
| 外文關鍵詞: | organic thin-film transistor, ion-beam processed, in situ microRaman scattering, photoalignment, surface energy |
| 相關次數: | 點閱:82 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軟性電子元件具可撓曲結構,低溫製程,低成本與易於攜帶等特點,因此成為目前相當熱門的研究主題。而有機薄膜電晶體(organic thin-film transistor;簡稱OTFT)可用以驅動液晶(liquid crystal)或有機發光二極體(organic light emitting diodes;簡稱OLED),作為主動式平面顯示器(active matrix flat panel display)的開關,或未來電子紙(electronic paper)內部的重要元件。本論文將以非接觸式配向技術改善有機分子排列,並以此方法應用於OTFT 元件中,藉以改善元件的製程與特性。此外,使用臨場拉曼光譜量測(in-situ microRaman)分析有機薄膜結構與載子傳輸的關聯。最後藉由控制有機介電層的表面極性與表面能,達成具有較高載子遷移率的有機電晶體元件。本論文首先回顧文獻上有關有機半導體薄膜特性與其載子傳輸的理論,如載子的躍遷模型、捕捉態、偏極子等,及有機薄膜電晶體操作的相關原理。同時也簡介一般非接觸式配向方法以及相關量測技術。其次分別討論光配向 (photoalignment) 與離子束配向(Ion-beam processed)處理過之有機薄膜特性,其中離子束配向有機薄膜方法為本實驗室首先提出的技術。應用此兩方法於OTFT 元件中,以提升元件操作特性,如載子遷移率、起使電壓、元件開關比、電流異向性等重要操作參數。再來我們使用拉曼散射,分析OTFT 元件在操作時的有機薄膜內部的聲子訊號,發現不同方向電場偏壓下,將造成薄膜結構的相變,藉此以瞭解有機分子在電場下交互作用的影響,可解釋OTFT 元件電性穩定性與有機薄膜排列結構的關係。最後,研究介電層表面特性對元件的關係,發現介電層表面能對OTFT 元件特性有高度相關性,非極性及適當的表面能值,可幫助有機薄膜具有最佳的晶格品質,此將有助於內部載子的傳輸。
Organic thin-film transistors (OTFTs) can be a competitive candidate for existing or novel thin film transistor applications that require structural flexibility, low temperature processing, and especially low cost. Such
applications include the switching devices of active matrix for flat panel displays based on liquid crystal pixels, organic light emitting diodes, or electronic papers. In this thesis, we achieved non-contact alignmenttechnologies including photoalignment and ion-beam alignment in OTFTs. We also investigated the relations of organic semiconductor films structure and it’s carrier transport by in-situ microRaman spectroscopy and tried to improve the carriers mobility by the modifications of dielectric layer surface polarity and energy. First, we review the theories of carriers transport and the characteristics of an organic thin film, such as carriers hopping, trap states, polarons, and the OTFTs’ operation. We also described alignment methods and measurements for OTFTs. Secondly, we discussed and compared the physical characteristics and performance, which contains the field-effect mobility, threshold voltage, and on/off ratio of OTFTs with the photoalignment method and ion-beam processed method. In addition we observed the lattice phonon of pentacene molecules under different conditions that devices operated at various source-drain and gate voltages. Phase transition of pentacene film of OTFTs were induced by the applied external electrical field parallel to the cannel between the source and drain electrodes. From the analysis, we can investigate the coupling of adjacent molecules under external electrical field and find it will play an important role for carriers transport.In last, we studied the thin-film structure and carrier mobility affected by the surface free energy and polarity of the gate dielectrics strongly. We find that a controllable surface energy of dielectrics can effectively avoid structural dislocation and reduce the carriers scattering from film defects. Lower free energy and non-polarity of the dielectric is good for the growth of a pentacene thin film and its performance.
[1.1]J. Bardeen, and W. H. Brattain, “The Transistor, A Semi-Conductor Triode” Phys. Rev. 74, 230 (1948).
[1.2]C. K. Chiang, C. R. Fincher, Y. W. park, A. J. Heeger, H.Shirakawa, E. J. Louis, S. C. Gan, and A. G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene” Phys. Rev. lett. 39, 1098 (1977).
[1.3]陳壽安, 物理雙月刊 ,23(2), 312 (2001).
[1.4]Y. –Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz, “Organic Complementary Ring Oscillators,”Appl. Phys Lett. 74, 2714 (1999).
[1.5]C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater. 14, 99 (2002).
[1.6]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard,B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W.Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional Charge Transport in Self-organized High-mobility Conjugated Polymers,” Nature 401, 685 (1999).
[1.7]P. Dyreklev, G. Gustafsson, O. Inganas, and H. stubb, “Polymeric Field-effect Transistors Using Oriented Polymers,” Synth. Metal. 57, 4093 (1993).
[1.8]H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, “Mobility Enhancement in Conjugated Polymer Field-effect Transistors through Chain Alignment in a Liquid-crystalline Phase,” Appl. Phys. Lett. 77, 406 (2000).
[1.9]M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, B. T. Weslowski, R. N. Shashidhar, and C. S. Dulcey,“Orientation of Pentacene Films Using Surface Alignment Layers and Its Influence on Thin-film Transistor Characteristics,” Appl. Phys Lett. 79, 1300 (2001).
CHAPTER 2
[2.1]M. Ahlskog, J. Paloheimo, H. Stubb, and A. Assadi, “Pressure-dependent Operation in Poly(3-alkylthiophene) Field-effect Transistors and
Schottky Diodes,” Synth Met. 65, 77 (1994).
[2.2]C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising
High-Dielectric Constant Gate Insulators,”Science 283, 822 (1999).
[2.3]P. Dyreklev, G. Gustafassou, O. Inganas, and H. Stubb, “Aligned Polymer Chain Field Effect Transistors,” Solid State Commun. 82, 317(1992).
[2.4]E. M. Conwell, “Impurity Band Conduction in Germanium and Slilcon,”Phys. Rev. 103, 51 (1956).
[2.5]N. F. Mott, Canadian J. Phys. 34, 1356(1956).
[2.6]D. D. Eley, H. Inokuchi, and M. R. Willis, “The Semi-conductivity of Organic Substances. Part 4.-Semi-quinone Type Molecular Complexes,”Discus. Faraday Soc. 28, 54 (1959).
[2.7]R. M. Glaeser, and R. S. Berry, J. Chem. Phys. 44, 3797 (1966)
[2.8]P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Phys. Rev. Lett. 25, 509 (1970).
[2.9]施敏,“ 半導體元件物理與製造技術”,高立出版社(1997).
[2.10]S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson,“Temperature-independent Transport in High-mobility Pentacene Transistors,” Appl. Phys. Lett. 72, 1854 (1998).
[2.11]Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson,“Pentacene-based Organic Thin-film Transistors,” IEEE Trans. Electr. Dev. 44, 1325 (1997).
[2.12]W. Warta, and N. Karl, “Hot Holes in Naphthalene: High, Electric-field-dependent Mobilities,” Phys. Rev. B. 32, 1172 (1985).
[2.13]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 Thin Film Transistors,” Appl. Phys. Lett. 67, 121 (1995).
[2.14]C. C. Mattheus, J. Baas, A. Meetsma, J. L. de Boer, C. Kloc, T. Siegrist, and T. T. M. Palstra, “A 2:1 Cocrystal of 6,13 dihydropentacene and Pentacene,” Acta Cryst. E58, o1229 (2002).
[2.15]C. C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, and T. T. M. Palstra, “Polymorphism in Pentacene,” Acta Cryst. C57, 939 (2001).
[2.16]R. B. Campbell, J. M. Robertson, and J. Trotter, “The Crystal Structure of Hexacene, and a Revision of the Crystallographic Data for Tetracene,” Acta Cryst. 15, 289 (1962)
[2.17]D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683 (1972).
[2.18]D. D. Huang, E. P. Pozhidaevl, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned Ferroelectric Liquid Crystal Displays Based on Azo-dye Layers ,” Displays 25, 21 (2004).
[2.19]D. H. Choi, and Y. K. Cha, “Optical Anisotropy of Polyimide and Polymethacrylate Containing Photocrosslinkable Chalcone Group in the Side Chain under irradiation of a Linearly Polarized UV Light,” Bull. Korean Chem. Soc. 23, 469 (2002).
[2.20]J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order,” Science 292, 2299 (2001).
[2.21]W. Y. Chou, Z. Y. Ho, F.C. Tang, Y. S. Mai, T. Y. Wu, H. L. Cheng, C. R. Sheu, C. C. Liao and K. H Liu, “Ion-Beam-Processed SiO2 Film for Homogeneous Liquid Crystal Alignment,” Jpn. J. Appl. Phys. 44, L876 (2005).
[2.22]V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, “Physics of Closed Drift Thrusters,” Plasma Sources Sci. Technol. 8, R1-R20 (1999).
[2.23]K. Hiroshima, “Controlled High-Tilt-Angle Nematic Alignment Compatible with Glass Frit Sealing,” Jpn. J. Appl. Phys. 21, L761 (1982).
[2.24]J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The Mechanism of Polymer Alignment of Liquid-Crystal Materials,” J. Appl. Phys. 62, 4100 (1987).
[2.25]K. Ichimura, Y. Akita, H. Akiyama, Y. Hayashi, and K. Kudo, “Role of E/Z Photoisomerization of Cinnamate Side Chains Attached to Polymer Backbones in the Alignment Photoregulation of Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 35, L992 (1996).
[2.26]K. J. Han, Y. Jung, H. H. Choi, H. K. Hwang, S. Lee, S. H. Jang, and H. Takezoe, “Director Tilting of Liquid Crystals on Photoisomerizable Polyimide Alignment Layers Doped with Homeotropic Surfactant,” J. Appl. Phys. 86(4), 1854 (1999).
[2.27]S. Perny, P. L. Barny, J. Delarire, I. Dozov, S. Forget, and P. Auroy, “Synthesis and Liquid Crystal Alignment Properties of New Cinnamate-based Photocrosslinkable Polymers,” Liq. Cryst. 27(3), 349 (2000).
[2.28]M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-domain Liquid-crystal Displays with Wide Viewing Angles,” Nature 381, 212 (1996).
[2.29]Y. Wang, C. Xu, A. Kanazawa, T. Shiono, T. Ikeda, Y. Matsuki, and Y. Takeuchi, “Alignment of a Nematic Liquid Crystal Induced by Anisotropic Photo-oxidation of Photosensitive Polyimide Films,” J. Appl. Phys. 84(8), 4573 (1998).
[2.30]M. Nishikawa, Y. Yokoyama, N. Bessho, D. S. Seol, Y Iimural, and S. Kobayashi, “Synthesis of a Novel Organic-Solvent-Soluble Polyimide and Its Application to Alignment Film for Liquid Crystal Displays,” Jpn. J. Appl. Phys. 33, L810 (1994).
[2.31]何宗曄, “離子束處理二氧化矽薄膜對水平配向液晶之研究,” 碩士論文, 國立成功大學, (2005).
[2.32]P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A.Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H.Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki and Y. Shiota, “Atomic-beam Alignment of Inorganic Materials for Lliquid-crystal Displays,” Nature 411, 56 (2001).
CHAPTER 3
[3.1]C. Kittel “Introduction to Solid State Physics” 7th edition Wiley, New York (1996).
[3.2]葉佳元, “不同氣體環境下五環素薄膜成長機制之研究,” 碩士論文, 國立成功大學, (2005).
[3.3]J. D. Jackson “Classical Electrodynmics” Wiley, New York (1999).
[3.4]L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti, and G. Strazzulla, “Raman and Iinfrared Spectra of Polycyclic Aromatic Hydrocarbon Molecules of Possible Astrophysical Interest,” Astrophys. J. 396. 369 (1992).
CHAPTER 4
[4.1]M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Mobility Enhancement through Homogeneous Nematic Alignment of a Liquid-crystalline Polyfluorene,” Appl. Phys. Lett. 74, 1400 (1999).
[4.2]M. Nishikawa, B. Taheri, and J. L.West, “Mechanism of Unidirectional Liquid-crystal Alignment on Polyimides with Linearly Polarized
Ultraviolet Light Exposure,” Appl. Phys. Lett. 72, 2403 (1998).
[4.3]T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,”Phys. Rev. 142,570 (1966).
[4.4]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor
Applications,” J. Appl. Phys. 80, 2501 (1996).
[4.5]L. E. Alexander, “X-ray Diffraction Methods in Polymer Science” Wiley, New York, 429 (1969).
[4.6]T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of Optical Second Harmonic Generation from Pentacene Films of Different Morphology and Structure,” Thin Solid Films 315, 273 (1998).
[4.7]A. Brillante, R. G. Della Valle, L. Farina, A. Girlando, M. Masino, and E. Venuti, “Raman Phonon Spectra of Pentacene Polymorphs,” Chem. Phys. Lett. 357, 32 (2002).
[4.8]X. L. Chen, A. J. Lovinger, Z. Bao, and J. Sapjeta, “Morphological and Transistor Studies of Organic Molecular Semiconductors with Anisotropic Electrical Characteristics,” Chem. Mater. 13, 1341 (2001).
CHAPTER 5
[5.1]R. Hosemann, and S. N. Bagchi, “Direct Analysis of Diffraction by Matter” North-Holland, Amsterdam (1962).
[5.2]R. Hosemann, and A. M. Hindeleh,“Structure of Crystalline and Paracrystalline Condensed Matter,” J. Macromol. Sci. Phys. B34, 327
(1995).
[5.3]F.-J. M. zu Heringdorf, M. C. Reuter, and R. M. Tromp, “Growth Dynamics of Pentacene Thin Films,” Nature 412, 517 (2001).
[5.4]T. Aoki-Matsumoto, K. Furuta, T. Yamada, H. Moriya, K. Mizuno, and A. H. Matsui, “Excitonic Photoluminescence in Pentacene Single Crystal,” Int. J. Mod. Phys. B15, 3753 (2001).
[5.5]R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, and C. Nuckolls,“Resonant Raman Scattering in Nanoscale Pentacene Films,” Appl. Phys. Lett. 84, 987 (2004).
[5.6]S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of
Performance with a Polymeric Smoothing Layer,” J. Phys. Chem. B. 109, 10574 (2005)
CHAPTER 6
[6.1]T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res. Soc. Symp. Proc. 771, L6.5.1 (2003).
[6.2]R. G. Della Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando, and M. Masino, “Exploring the Polymorphism of Crystalline Pentacene,” Org. Electron. 5, 1 (2005). And reference therein.
[6.3]C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra,“Modeling the Polymorphism of Pentacene,” J. Am. Chem. Soc. 125, 6323 (2003). And reference therein.
[6.4]A. Brillante, R.G. Della Valle, L. Farina, A. Girlando, M. Masino, and E. Venuti, “Pressure-induced Phase Transition in Pentacene,” Chem. Phys. Lett. 375, 490 (2003).
[6.5]D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson,“Solvent-induced Phase Transition in Thermally Evaporated Pentacene
Films,” Appl. Phys. Lett. 74, 3302 (1999).
[6.6]D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene Thin Film Transistors on Inorganic Dielectrics: Morphology, Structural Properties, and Electronic Transport,” J. Appl. Phys. 93, 347 (2003). And reference therein.
[6.7]Y. W. Wang, H. L. Cheng, Y. K. Wang, T. H. Hu, J. C. Ho, C. C. Lee, T. F. Lei, and C. F. Yeh, “Influence of Measuring Environment on the
Electrical Characteristics of Pentacene-based Thin Film Transistors,”Thin Solid Films 467, 215 (2004). And reference therein.
[6.8]W. Y. Chou, and H. L. Cheng, “An Orientation-Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin-Film
Transistor Applications,” Adv. Funct. Mater.14, 811 (2004).
[6.9]Y. W. Wang, H. L. Cheng, Y. K. Wang, T. H. Hu, J. C. Ho, C. C. Lee, T. F. Lei, and C. F. Yeh, “Pentacene-based Thin Dilm Transistors Used to Drive a Twist-nematic Liquid Crystal Display,” Thin Solid Films 491, 305 (2005).
[6.10]M. Cazayous, A. Sacuto, G. Horowitz, Ph. Lang, A. Zimmers, and R. P. S. M. Lobo, “Iodine Insertion in Pentacene Thin Films Investigated by
Infrared and Raman Spectroscopy,” Phys. Rev. B 70, 081309(R) (2004).
[6.11]A. S. Davydov, “Theory of Molecular Excitons” Plenum Press, New York (1971).
[6.12]V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T.G. Bill, and J. L.Brédas, “Hole- and Electron-Vibrational Couplings in
Oligoacene Crystals: Intramolecular Contributions,” Phys. Rev. Lett. 89, 275503 (2002).
[6.13]W. Y. Chou, C. W. Kuo, Y. S. Mai, S. T. Lin, H. L. Cheng, C. C. Liao, and D. Y. Shu, “Enhancing the Performance of Organic Thin Film
Transistors Using a Novel Photoalignment Method,” Proc. SPIE-Int. Soc. Opt. Eng. 5522, 97 (2004).
CHAPTER 7
[7.1]A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,”Science 268, 270 (1995).
[7.2]M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of Film Morphology and Gate Dielectric Surface Preparation on the Electrical Characteristics of Organic-vapor-phase-deposited Pentacene Thin-film Transistors,” Appl. Phys. Lett. 81, 268 (2002).
[7.3]L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz,“Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors,” Science 272, 1462 (1996).
[7.4]M. H. Choo, J. H. Kim, and S. Im, “Hole Transport in Amorphous-crystalline-mixed and Amorphous Pentacene Thin-film Transistors ,” Appl. Phys. Lett. 81, 4640 (2002).
[7.5]A. Rolland, J. Richard, J. -P. Kleider, and D. Mencaraglia, “Electrical Properties of Amorphous Silicon Transistors and MIS-Devices:
Comparative Study of Top Nitride and Bottom Nitride Configurations,” J. Electrochem. Soc. 140, 3679 (1993).
[7.6]L. F. Drummy, and D. C. Martin, “Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films,” Adv. Mater. (Weinheim, Ger.) 17, 903 (2005).
[7.7]王潔瑩, “以氨氣及乙炔/氨氣電漿改質法提昇聚四氟乙烯膜面親水性之研究,” 碩士論文, 私立中原大學, (2004).