| 研究生: |
劉啟徵 Liu, Chi-Cheng |
|---|---|
| 論文名稱: |
在銅/中孔洞分子篩觸媒上以NH3還原NO的研究 Catalytic NO Reduction with NH3 over Mesoporous Molecular Sieve Loaded with Copper |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | SCR 催化反應 、MCM-41 、一氧化氮 、銅 |
| 外文關鍵詞: | Ammonia, Selective Catalytic Reduction, Nitric oxide, Cu/MCM-41 |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在利用MCM-41 當載體負載Cu 當觸媒,進行氨還原一氧化氮的實驗中,我們發現活性基Cu 的化學結構對反應活性會造成影響。實驗中以傳統的離子交換法和模板離子交換法製備的兩種觸媒(分別簡稱HMCu和TMCu)中,HMCu 觸媒的活性較大。我們利用CO 的程溫還原實驗和NO吸附後的程溫脫附實驗可知,HMCu 觸媒還原能力較好而且NO的吸附量較多,所以對SCR 反應之催化活性較高。再進一步的利用同步輻射,發現TMCu 觸媒的活性基Cu 本身的配位數高,和載體的鍵結數多,因此造成對SCR 反應之催化活性比HMCu 觸媒差。在動力學實驗方面,發現Mars-van Krevelen 能套適HMCu 觸媒催化SCR 反應中的反應機制。
Copper supported on MCM-41, through the template-ion exchange and the conventional hydroxyl group-ion exchange and incipient-wetness impregnation, were employed for selective catalytic NO reduction with NH3 within a temperature range of 200−450°C. Cu/MCM-41 catalysts with a low Cu content (ca. 0.7 wt%) from the template-ion and hydroxyl group-ion exchange methods, i.e. TMCu and HMCu respectively, showed high activities in the NO reduction. Further increase of the Cu content did not obviously improve the activity of the catalysts. HMCu has a higher activity than TMCu, especially at temperatures lower than 350°C. The Cu species on HMCu exhibited stronger tendencies towards reduction and oxidation, an indication that both reduction and oxidation of the active species controlled the NO reduction rate. The Mars-van Krevelen kinetic model gave a satisfactory simulation of the experimental data, which supported the argument that the NO reduction was governed by a cyclic redox of the Cu species. The reaction orders with respect to NO and NH3 were of a fraction (between 0.5 and unity) and of ca. zero, respectively. The activation energies were similar for reactions over these two catalysts, whereas the reactions over HMCu were seen to have larger values of the frequency factor, a parameter closely related to the intrinsic chemical structure. XANES spectra reflected that the catalysts were mainly composed of CuO. The coordination number of Cu−O analyzed by EXAFS reflected that HMCu had a larger content of CuI, which has been suggested to facilitate NO attack on active sites.
參考文獻
[1] 鄧熙聖,國內外選擇性觸媒還原法狀況及技術發展調查, 行政院國家科學委員會專題研
究計畫, 1997.
[2] 吳榮宗,氮氧化物防治技術及未來發展趨勢,工業污染防治,48, 1, p.26-41, 1994.
[3] 張君正,張木彬,氮氧化物生成機制與控制技術之探討,50, 4, p.19-35, 1994.
[4] 楊士慶,張志成,簡介低氮氧化物燃燒技術,化工技術, 3, 7, 7, p.146-159, 1995.
[5] V.I. Pârvulescu, P. Grange, B. Delmon, “Catalytic removal of NO” Catal.
Today 46 , 233 (1999).
[6] C.T. Kresge, M.E. Leonwicz, W.J. Roth, J.C. Vartuli, J.C. Beck, "Ordered
Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template
Mechanism," Nature 359, 710-712 (1992)
[7] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonwicz, C.T. Kresge, K.D.
Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J. B.
Higgins, J.L. Schlenker, "A New Family of Mesoporous Molecular Sieves
Prepared with Liquid Crystal Templates," J. Am. Chem. Soc. 114, 10834
(1992).
[8] C.Y. Chen, S.L. Burkett, H.X. Lin and M.E. Davis, "Microporous Mater." 2 17
1993.
[9] A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, D.S. Maxwell,
G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B.F
Chmelka., "Cooperative Formation of Inorganic-Organic Interfaces in the
Synthesis of Silicate Mesostructures," Science 261 1299-1303 (1993).
[10] E.A.Gunnewegh, S.S. Gopie, and H. van Bekkum, , J. Mol. Cat. A 106, 151
(1996).
[11] K.R. Kloetstra and H. van Bekkum, J. Chem. Soc., Chem. Commun., 1005 (1995).
[12] M. Hartmann, A. P¨oppl and L. Kevan, “Formation and Stability of Ni(I) Ions
in MCM-41 Mesoporous Molecular Sieves” J. Phys. Chem. 99, 17494 (1995).
[13] A. P¨oppl, M. Newhouse and L. Kevan, “Electron Spin Resonance and Electron
Spin Echo Modulation Studies of Cupric Ion Ion-Exchanged into Siliceous
MCM-41 ”J. Phys. Chem. 99, 10019 (1995).
[14] S.-S. Kim, W. Zhang and T. J. Pinnavaia, “Catalytic oxidation of styrene by
manganese(II) bipyridine complex cations immobilized in mesoporous
Al-MCM-41”Catal. Lett. 43, 149 (1997).
[15] R. Burch, N. Cruise, D. Gleeson and S.C. Tsang, “Surface-grafted
manganese-oxo species on the walls of MCM-41 channels novel oxidation
catalyst”Chem. Commun., 951 (1996).
[16] R. Burch, N.A. Cruise, D. Gleeson and S.C. Tsang, “Extended X-ray
absorption fine structure study of manganese-oxo species and related
compounds on the surface of MCM-41 channels” J. Mater. Chem. 8, 227 (1998).
[17] T. Maschmeyer, F. Rey, G. Sanker and J.M. Thomas, “Heterogeneous catalysts
obtained by grafting metallocene complexes onto mesoporous silica” Nature
378,159 (1995).
[18] R. Mokaya and W. Jones, “Post-synthesis grafting of Al onto MCM-41” Chem.
Commun., 2185 (1997).
[19] M. Yonemitsu, Y. Tanaka, M. Iwamoto, “Metal Ion-Planted MCM-41. 1. Planting
of Manganese(II) Ion into MCM-41 by a Newly Developed Template-Ion Exchange
Method”, Chem. Mater. 9, 2679-2681. (1997).
[20] M. Yonemitsu, Y. Tanaka, M. Iwamoto, “Metal Ion-Planted MCM41 2.Catalytic
Epoxidation of Stilbene and Its Derivatives with tert-Butyl Hydroperoxide on
Mn-MCM-41” J.Catal. 178, 207-213 (1998).
[21] Y.-J. Huang, H.P. Wang, J.F. Lee ”Speciation of copper in ZSM-48 during NO
reduction” , Appl. Catal. 40, 111-118 (2003).
[22] Y.-J. Huang, H.P. Wang, J.F. Lee, ”Catalytic reduction of NO on
copper/MCM41 studied by in situ EXAFS and XANES”, Chemosphere. 50,
1035-1041 (2003).
[23] G. Spoto, A. Zecchina, A. Bordiga, G. Ricchiardi, G. Martra, G. Leofanti, G.
Petrini, “Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with
gaseous CuCl–spectroscopic characterization and reactivity towards
carbon-monoxide and nitric-oxide”. Appl. Catal. B , 3 (2–3),151–172.
(1994)
[24] D.J. Liu, H.J. Robota, “In-situ characterization of Cu-ZSM-5 by
X-ray-absorption spectroscopy–XANES study of the copper oxidation-state
during selective catalytic reduction of nitric-oxide by hydrocarbons”.
Appl. Catal. B, 4 (2–3), 155–165 (1994).
[25] G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of HeterogeneousCatalysis
”, vol 3, VCH D-69451 Weinheim, 1508, (1997).
[26] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 390. (1938).
[27] E.P. Barrett, L.G. J oyner, and P.P. Halenda, J. Am. Chem. Soc. 73 373
(1951).
[28] W. Thomson, Phil. Mag. S., 42, 448 (1871)
[29] K. Boon Teo, EXAFS:Basic Principle and Data Analysis, Springer-
Verlag, New York (1986)
[30] D. C. Koningsberger, and R. Prins, “X-Ray Absorption:
Principles,Application, Techniques of EXAFS, SEXAFS and XANES, JohnWiley”,
New York (1988).
[31] J. J. Rehr, C. H. Booth, F. Bridges, and S. I. Zabinsky, ” X-ray-absorption
fine structure in embedded atoms” Phys. Rev. B 49, 12347 (1994).
[32] F. Bridges, C.H. Booth, and G.G. Li, Physical B, 121 208-209 (1995)
[33] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John
Wiley & Sons: New York (1988).
[34] 劉炫邦, 使用以氧化鋁擔體之混合型金屬氧化物觸媒催化二硫化二甲基與甲烷氧化分解
反應-酸處理之影響及反應動力, 國立成功大學大學化工研究所碩士論文, (1998).
[35] P. Mars, D.W. Van Krevelen, Special Supplement to Chem. Eng. Sci. 3, 41
(1954)
[36] M.J. Sang, H.J. Soon, S.Y. Kyung, D.K. Sang, “Selective Catalytic Reduction
of NO by NH3 over a Bulk Sulfated CuO/ -Al2O3 Catalyst” Ind. Eng. Chem.
Res., 38, 2210. (1999)
[37] G.. Centi, N. Passarini, S. Perathoner, A. Riva, G. Stella, “Combined
DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst. 3. DeNOx
behavior as a function of the surface coverage with sulfate species” Ind.
Eng. Chem. Res., 31 1963. (1992)
[38] I.S. Nam, J.W. Eldridge, J.R. Kittrell, Ind. Eng. Chem. Prod. Res. Dev. 25,
186 (1986).
[39] J. Blanco,J.F. García, P. Avila, F. Melo, ” Selective reduction of nitric
oxide on nickel oxide-copper oxide supported catalysts” J. Phys. Chem. 90,
4789. (1986)
[40] S.-C. Shen, S. Kawi, “Mechanism of selective catalytic reduction of NO in
the presence of excess O2 over Pt/Si-MCM-41 catalyst ” J. Catal. 213
241-250 (2003).
[41] K. Kusakabe, M. Kashima, S. Morooka,Y. Kato, Fuel, 67, 714 (1988).
[42] L. Singoredjo, F. Kapteijn, J.A. Moulijn, J.-M. Martín-Martínez, H.-P.
Boehm, Carbon, 31, 213 (1993)