簡易檢索 / 詳目顯示

研究生: 劉啟徵
Liu, Chi-Cheng
論文名稱: 在銅/中孔洞分子篩觸媒上以NH3還原NO的研究
Catalytic NO Reduction with NH3 over Mesoporous Molecular Sieve Loaded with Copper
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 66
中文關鍵詞: SCR 催化反應MCM-41一氧化氮
外文關鍵詞: Ammonia, Selective Catalytic Reduction, Nitric oxide, Cu/MCM-41
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在利用MCM-41 當載體負載Cu 當觸媒,進行氨還原一氧化氮的實驗中,我們發現活性基Cu 的化學結構對反應活性會造成影響。實驗中以傳統的離子交換法和模板離子交換法製備的兩種觸媒(分別簡稱HMCu和TMCu)中,HMCu 觸媒的活性較大。我們利用CO 的程溫還原實驗和NO吸附後的程溫脫附實驗可知,HMCu 觸媒還原能力較好而且NO的吸附量較多,所以對SCR 反應之催化活性較高。再進一步的利用同步輻射,發現TMCu 觸媒的活性基Cu 本身的配位數高,和載體的鍵結數多,因此造成對SCR 反應之催化活性比HMCu 觸媒差。在動力學實驗方面,發現Mars-van Krevelen 能套適HMCu 觸媒催化SCR 反應中的反應機制。

      Copper supported on MCM-41, through the template-ion exchange and the conventional hydroxyl group-ion exchange and incipient-wetness impregnation, were employed for selective catalytic NO reduction with NH3 within a temperature range of 200−450°C. Cu/MCM-41 catalysts with a low Cu content (ca. 0.7 wt%) from the template-ion and hydroxyl group-ion exchange methods, i.e. TMCu and HMCu respectively, showed high activities in the NO reduction. Further increase of the Cu content did not obviously improve the activity of the catalysts. HMCu has a higher activity than TMCu, especially at temperatures lower than 350°C. The Cu species on HMCu exhibited stronger tendencies towards reduction and oxidation, an indication that both reduction and oxidation of the active species controlled the NO reduction rate. The Mars-van Krevelen kinetic model gave a satisfactory simulation of the experimental data, which supported the argument that the NO reduction was governed by a cyclic redox of the Cu species. The reaction orders with respect to NO and NH3 were of a fraction (between 0.5 and unity) and of ca. zero, respectively. The activation energies were similar for reactions over these two catalysts, whereas the reactions over HMCu were seen to have larger values of the frequency factor, a parameter closely related to the intrinsic chemical structure. XANES spectra reflected that the catalysts were mainly composed of CuO. The coordination number of Cu−O analyzed by EXAFS reflected that HMCu had a larger content of CuI, which has been suggested to facilitate NO attack on active sites.

    總目錄 中文摘要..................................... I Abstract......................................II 致謝......................................... III 總目錄....................................... IV 圖目錄........................................VII 表目錄....................................... VIII 第一章 緒論...................................1 1.1. 前言.................................................................................................. 1 1.2. 氮氧化物對環境的影響.................................................................. 1 1.3. 氮氧化物的處理技術...................................................................... 2 1.4. 研究動機.......................................................................................... 3 第二章理論說明..........................................................................6 2.1. 選擇性觸媒還原氮氧化物的應用.................................................. 6 2.2. 分子篩MCM-41.............................................................................. 7 2.2.1 MCM41 的生成機構................................................................................ 7 2.2.2 MCM-41 的應用....................................................................................... 9 2.3. 氮氣吸附........................................................................................ 10 2.3.1 等溫吸附曲線........................................................................................... 11 2.3.2 BET 理論................................................................................................. 12 2.3.4 BJH 理論................................................................................................. 13 V 2.4. 同步輻射分析................................................................................ 17 2.4.1 X 光近緣結構(XANES) ......................................................................... 17 2.4.2 延伸X 光吸收精細結構(EXAFS)......................................................... 18 2.4.3 測試方法................................................................................................. 20 2.5. 觸媒反應動力學模式研究............................................................ 21 2.5.1. Power-rate Law 模式............................................................................. 22 2.5.2. Langmuir-Hinshelwood 模式................................................................ 22 2.5.3. Mars-van Krevelen 模式....................................................................... 24 2.5.4. 反應速率常數與活化能之關係............................................................ 25 第三章實驗藥品設備與實驗.....................................................28 3.1. 實驗藥品與設備............................................................................ 28 3.1.1. 實驗用氣體............................................................................................ 28 3.1.2. 實驗用藥品............................................................................................ 28 3.1.3. 表面吸附儀(ASAP2010).................................................................. 29 3.1.4. SCR 觸媒反應裝置................................................................................ 29 3.1.5. 氮氧化物分析儀(API M200AH) ..................................................... 29 3.1.6. 碳氧化物分析儀.................................................................................... 30 3.1.7. 原子吸收光譜(Atomic Absorption Spectrophotometer).................. 30 3.1.8. 同步輻射................................................................................................ 31 3.2. 實驗步驟........................................................................................ 31 3.2.1. MCM-41 的合成.................................................................................... 31 3.2.2. 觸媒製作................................................................................................ 32 3.2.3. 觸媒活性測試........................................................................................ 32 3.2.4. 一氧化氮程溫脫附實驗(NO -TPD).................................................... 33 3.2.5. 程溫還原實驗(TPR) ............................................................................ 34 3.2.6. 動力學實驗設計.................................................................................... 34 3.2.7. 觸媒同步輻射分析................................................................................ 35 第四章結果與討論....................................................................38 4.1. 觸媒的物理特性............................................................................ 38 4.2. 觸媒活性測試................................................................................ 38 4.3. 動力學分析.................................................................................... 40 Power-rate law 模式:....................................................................................... 40 Langmuir-Hinshelwood 模式:.......................................................................... 41 Mars-van Krevelen 模式: ................................................................................. 42 4.4. NO-TPD ......................................................................................... 43 4.5. 觸媒表面結構分析........................................................................ 44 第五章結論..............................................................................58 參考文獻........................................................................................59 附錄................................................................................................62 自述................................................................................................66

    參考文獻

    [1] 鄧熙聖,國內外選擇性觸媒還原法狀況及技術發展調查, 行政院國家科學委員會專題研
    究計畫, 1997.
    [2] 吳榮宗,氮氧化物防治技術及未來發展趨勢,工業污染防治,48, 1, p.26-41, 1994.
    [3] 張君正,張木彬,氮氧化物生成機制與控制技術之探討,50, 4, p.19-35, 1994.
    [4] 楊士慶,張志成,簡介低氮氧化物燃燒技術,化工技術, 3, 7, 7, p.146-159, 1995.
    [5] V.I. Pârvulescu, P. Grange, B. Delmon, “Catalytic removal of NO” Catal.
    Today 46 , 233 (1999).
    [6] C.T. Kresge, M.E. Leonwicz, W.J. Roth, J.C. Vartuli, J.C. Beck, "Ordered
    Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template
    Mechanism," Nature 359, 710-712 (1992)
    [7] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonwicz, C.T. Kresge, K.D.
    Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J. B.
    Higgins, J.L. Schlenker, "A New Family of Mesoporous Molecular Sieves
    Prepared with Liquid Crystal Templates," J. Am. Chem. Soc. 114, 10834
    (1992).
    [8] C.Y. Chen, S.L. Burkett, H.X. Lin and M.E. Davis, "Microporous Mater." 2 17
    1993.
    [9] A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, D.S. Maxwell,
    G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B.F
    Chmelka., "Cooperative Formation of Inorganic-Organic Interfaces in the
    Synthesis of Silicate Mesostructures," Science 261 1299-1303 (1993).
    [10] E.A.Gunnewegh, S.S. Gopie, and H. van Bekkum, , J. Mol. Cat. A 106, 151
    (1996).
    [11] K.R. Kloetstra and H. van Bekkum, J. Chem. Soc., Chem. Commun., 1005 (1995).
    [12] M. Hartmann, A. P¨oppl and L. Kevan, “Formation and Stability of Ni(I) Ions
    in MCM-41 Mesoporous Molecular Sieves” J. Phys. Chem. 99, 17494 (1995).
    [13] A. P¨oppl, M. Newhouse and L. Kevan, “Electron Spin Resonance and Electron
    Spin Echo Modulation Studies of Cupric Ion Ion-Exchanged into Siliceous
    MCM-41 ”J. Phys. Chem. 99, 10019 (1995).
    [14] S.-S. Kim, W. Zhang and T. J. Pinnavaia, “Catalytic oxidation of styrene by
    manganese(II) bipyridine complex cations immobilized in mesoporous
    Al-MCM-41”Catal. Lett. 43, 149 (1997).
    [15] R. Burch, N. Cruise, D. Gleeson and S.C. Tsang, “Surface-grafted
    manganese-oxo species on the walls of MCM-41 channels novel oxidation
    catalyst”Chem. Commun., 951 (1996).
    [16] R. Burch, N.A. Cruise, D. Gleeson and S.C. Tsang, “Extended X-ray
    absorption fine structure study of manganese-oxo species and related
    compounds on the surface of MCM-41 channels” J. Mater. Chem. 8, 227 (1998).
    [17] T. Maschmeyer, F. Rey, G. Sanker and J.M. Thomas, “Heterogeneous catalysts
    obtained by grafting metallocene complexes onto mesoporous silica” Nature
    378,159 (1995).
    [18] R. Mokaya and W. Jones, “Post-synthesis grafting of Al onto MCM-41” Chem.
    Commun., 2185 (1997).
    [19] M. Yonemitsu, Y. Tanaka, M. Iwamoto, “Metal Ion-Planted MCM-41. 1. Planting
    of Manganese(II) Ion into MCM-41 by a Newly Developed Template-Ion Exchange
    Method”, Chem. Mater. 9, 2679-2681. (1997).
    [20] M. Yonemitsu, Y. Tanaka, M. Iwamoto, “Metal Ion-Planted MCM41 2.Catalytic
    Epoxidation of Stilbene and Its Derivatives with tert-Butyl Hydroperoxide on
    Mn-MCM-41” J.Catal. 178, 207-213 (1998).
    [21] Y.-J. Huang, H.P. Wang, J.F. Lee ”Speciation of copper in ZSM-48 during NO
    reduction” , Appl. Catal. 40, 111-118 (2003).
    [22] Y.-J. Huang, H.P. Wang, J.F. Lee, ”Catalytic reduction of NO on
    copper/MCM41 studied by in situ EXAFS and XANES”, Chemosphere. 50,
    1035-1041 (2003).
    [23] G. Spoto, A. Zecchina, A. Bordiga, G. Ricchiardi, G. Martra, G. Leofanti, G.
    Petrini, “Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with
    gaseous CuCl–spectroscopic characterization and reactivity towards
    carbon-monoxide and nitric-oxide”. Appl. Catal. B , 3 (2–3),151–172.
    (1994)
    [24] D.J. Liu, H.J. Robota, “In-situ characterization of Cu-ZSM-5 by
    X-ray-absorption spectroscopy–XANES study of the copper oxidation-state
    during selective catalytic reduction of nitric-oxide by hydrocarbons”.
    Appl. Catal. B, 4 (2–3), 155–165 (1994).
    [25] G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of HeterogeneousCatalysis
    ”, vol 3, VCH D-69451 Weinheim, 1508, (1997).
    [26] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 390. (1938).
    [27] E.P. Barrett, L.G. J oyner, and P.P. Halenda, J. Am. Chem. Soc. 73 373
    (1951).
    [28] W. Thomson, Phil. Mag. S., 42, 448 (1871)
    [29] K. Boon Teo, EXAFS:Basic Principle and Data Analysis, Springer-
    Verlag, New York (1986)
    [30] D. C. Koningsberger, and R. Prins, “X-Ray Absorption:
    Principles,Application, Techniques of EXAFS, SEXAFS and XANES, JohnWiley”,
    New York (1988).
    [31] J. J. Rehr, C. H. Booth, F. Bridges, and S. I. Zabinsky, ” X-ray-absorption
    fine structure in embedded atoms” Phys. Rev. B 49, 12347 (1994).
    [32] F. Bridges, C.H. Booth, and G.G. Li, Physical B, 121 208-209 (1995)
    [33] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John
    Wiley & Sons: New York (1988).
    [34] 劉炫邦, 使用以氧化鋁擔體之混合型金屬氧化物觸媒催化二硫化二甲基與甲烷氧化分解
    反應-酸處理之影響及反應動力, 國立成功大學大學化工研究所碩士論文, (1998).
    [35] P. Mars, D.W. Van Krevelen, Special Supplement to Chem. Eng. Sci. 3, 41
    (1954)
    [36] M.J. Sang, H.J. Soon, S.Y. Kyung, D.K. Sang, “Selective Catalytic Reduction
    of NO by NH3 over a Bulk Sulfated CuO/ -Al2O3 Catalyst” Ind. Eng. Chem.
    Res., 38, 2210. (1999)
    [37] G.. Centi, N. Passarini, S. Perathoner, A. Riva, G. Stella, “Combined
    DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst. 3. DeNOx
    behavior as a function of the surface coverage with sulfate species” Ind.
    Eng. Chem. Res., 31 1963. (1992)
    [38] I.S. Nam, J.W. Eldridge, J.R. Kittrell, Ind. Eng. Chem. Prod. Res. Dev. 25,
    186 (1986).
    [39] J. Blanco,J.F. García, P. Avila, F. Melo, ” Selective reduction of nitric
    oxide on nickel oxide-copper oxide supported catalysts” J. Phys. Chem. 90,
    4789. (1986)
    [40] S.-C. Shen, S. Kawi, “Mechanism of selective catalytic reduction of NO in
    the presence of excess O2 over Pt/Si-MCM-41 catalyst ” J. Catal. 213
    241-250 (2003).
    [41] K. Kusakabe, M. Kashima, S. Morooka,Y. Kato, Fuel, 67, 714 (1988).
    [42] L. Singoredjo, F. Kapteijn, J.A. Moulijn, J.-M. Martín-Martínez, H.-P.
    Boehm, Carbon, 31, 213 (1993)

    下載圖示 校內:2005-08-03公開
    校外:2005-08-03公開
    QR CODE