簡易檢索 / 詳目顯示

研究生: 陳毅豪
Chen, I-Hao
論文名稱: 利用石墨烯與溶液之間的接觸面積比來調控多數載子的類型以擷取藍色能源
Adjust the Type of Majority Carrier by Using the Contact Area Ratio Between Graphene and Solutions for Harvesting Blue Energy
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 石墨烯誘導電壓接觸比例多數載子藍色能源能源擷取
外文關鍵詞: Graphene, Induced voltage, Contact ratio, Majority carrier, Energy harvesting
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從自然環境中的水體運動擷取能量是非常必要的,不僅可以緩解對能源的能源需求,也可以讓電子設備自我供電。石墨烯是一種具有多功能性的二維材料,可應用於收集能量。為了改善影響石墨烯誘發電壓產生的因素,我們製作了一種新型實驗裝置,可以透過擷取環境中的水體運動來產生電能。
    本論文主要探討石墨烯暴露於溶液的不同面積比例(w/L)時對產生電壓的影響。利用光阻來定義溶液流經石墨烯的面積比例(w/L),使用PDMS作為流道及電極的防水層。首先,我們發現了誘導電壓會隨著溶液濃度提高而提高。其次,比較氯化氫(HCl)、氯化鈉(NaCl)和氯化鉀(KCl)三者不同溶液對誘導電壓的影響。由於半徑較小的陽離子與石墨烯表面π-電子具有較強的庫倫力能緊密吸附在石墨烯表面,因此氫離子(H^+)的誘導電壓會比鈉離子(Na^+)和鉀離子(K^+)大。最後,探討石墨烯晶片以不同比例的面積(w/L)暴露在溶液中產生的誘導電壓。值得注意的是誘導電壓的最大值是接觸比例40%(w/L=0.4/1)與60%(w/L=0.6/1),而在接觸比例50%(w/L=0.5/1)的誘導電壓卻低於接觸比例40%(w/L=0.4/1)和60%(w/L=0.6/1),形成M型的對稱結構。另外我們也發現誘導電壓對於溶液的流動情形非常敏感。
    綜合本論文的實驗結果可以得到以下結論:電荷載子的數量不僅隨接觸比例(w/L)而變化,而且也隨著溶液濃度而變化,其次才取決於與石墨烯接觸的液體的類型。最重要的是多數載子的類型可透過改變接觸比例(w/L)來調節。我們展示了石墨烯晶片能量轉換的可行性也提供調整石墨烯的多數載子的方法,讓石墨烯晶片在不同的場合中的應用變更靈活,例如:透過海浪、河流或是雨水來獲取藍色能源。

    Harvesting energy from ambient water motions is highly necessary, which is not only to reduce demand on energy but also to realize the self-powered electronic devices. Graphene is a functional material which we can utilize it to harvest the energy. To improve the factors of the induced voltage generation by the graphene, we prepared a new experimental device which can generate electricity through harvesting ambient water motions. In this study, we mainly discusses various contact ratio (w/L) of graphene exposed to the solution influencing on the induced voltage. Photoresist is used to define the contact ratio (w/L) of the solution flowing through the graphene. It was found that the contact ratio of 40% (w/L=0.4/1) and 60% (w/L=0.6/1) generate the maximum value of the induced voltage. However, the induced voltage of the contact ratio 50% (w/L=0.5/1) is lower than the contact ratio of 40% (w/L=0.4/1) and 60% (w/L=0.6/1). The diagram for the induced voltage with different contact ratios look like an M-type symmetrical structure. The type of majority carrier can be adjusted by changing the contact ratio (w/L) between the graphene and the electrolyte solution. This work provides the feasibility of energy conversion using graphene chips and a method for adjusting the majority carriers to the graphene, allowing the feasibility of the graphene to be more flexible for harvesting blue energies from nature.

    目錄 中文摘要 I 致謝VIII 目錄IX 圖目錄XI 表目錄XIV 縮寫說明及符號說明XV 第一章 緒論1 1-1研究動機與目的1 1-2研究架構2 第二章 文獻回顧與基礎理論3 2-1石墨烯發展及歷史3 2-2石墨烯的製備方法3 2-2-1機械剝離法(Mechanical Exfoliation)4 2-2-2磊晶成長法(Epitaxial Growth)4 2-2-3化學氣相沉積法(Chemical vapor deposition, CVD)4 2-3石墨烯品質檢測5 2-3-1石墨烯與拉曼散射光譜6 2-4文獻回顧7 2-5文獻總結10 第三章 實驗步驟與方法26 3-1實驗材料與藥品26 3-1-1石墨烯製造方式及品質26 3-2實驗儀器與軟體27 3-3實驗流程29 3-3-1石墨烯晶片製程29 3-3-2流道與電極製程29 3-3-3實驗架設30 第四章 結果與討論39 4-1實驗結果與討論39 4-1-1溶液濃度對石墨烯的影響39 4-1-2不同溶液對石墨烯的影響40 4-1-3接觸比例對石墨烯的影響41 4-1-4流體對石墨烯的影響42 第五章 結論與未來展望53 5-1結論53 5-2未來展望54 參考文獻55

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. "Electric field effect in atomically thin carbon films." Science 306.5696 (2004): 666-669.
    [2]S. J. Tsai, and R. J. Yang. "Bimodal behaviour of charge carriers in graphene induced by electric double layer." Scientific Reports 6 (2016): 30731.
    [3]A. K. Geim, and K. S. Novoselov. "The rise of graphene." Nature Materials 6.3 (2007): 183.
    [4]C. Lee, X. Wei, J. W. Kysar, J. Hone. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science 321.5887 (2008): 385-388.
    [5]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer. "Ultrahighelectron mobility in suspended graphene." Solid State Communications 146.9-10 (2008): 351-355.
    [6]P. Kumar, A. K. Singh, S. Hussain, K. N. Hui, K. S.Hui, Jonghwa Eom, Jongwan Jung, Jai Singh. "Graphene:synthesis, properties and application in transparent electronic devices." Reviews in Advanced Sciences and Engineering 2.4 (2013): 238-258.
    [7]M. J. Allen, V. C. Tung, R. B. Kaner. "Honeycomb carbon: a review of graphene." Chemical Reviews110.1 (2009): 132-145.
    [8]R. Murali, K. Brenner, Y. Yang, T. Beck, and J. D. Meindl. "Resistivity of graphene nanoribbon interconnects." IEEE Electron Device Letters 30.6 (2009): 611-613.
    [9]J. Hass, W. A. De Heer, and E. H. Conrad. "The growth and morphology of epitaxial multilayer graphene." Journal of Physics: Condensed Matter 20.32 (2008): 323202.
    [10]K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. "A roadmap for graphene." Nature 490.7419 (2012): 192.
    [11]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H.
    Conrad, P. N. First, and W. A. de Heer. "Electronic confinement and coherence in patterned epitaxial graphene." Science 312.5777 (2006): 1191-1196.
    [12]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez´. "Epitaxial graphene." Solid State Communications 143.1-2 (2007): 92-100.
    [13]J. Hass, W. A. de Heer, and E. H. Conrad. "The growth and morphology of epitaxial multilayer graphene." Journal of Physics: Condensed Matter 20.32 (2008): 323202.
    [14] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457.7230 (2009): 706.
    [15] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong. "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano Letters9.1 (2008): 30-35.
    [16] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, and H. M. Cheng. "Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum." Nature Communications 3 (2012): 699.
    [17] X. Li, W. Cai, L. Colombo, and R. S. Ruoff. "Evolution of graphene growth on Ni and Cu by carbon isotope labeling." Nano Letters 9.12 (2009): 4268-4272.
    [18] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei. "Graphene segregated on Ni surfaces and transferred to insulators." Applied Physics Letters 93.11 (2008): 113103.
    [19] C. Mattevi, H. Kim, and M. Chhowalla. "A review of chemical vapour deposition of graphene on copper." Journal of Materials Chemistry 21.10 (2011): 3324-3334.
    [20] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh. "Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst." ACS Nano 5.12 (2011): 9927-9933.
    [21] W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S. S. Pei. "Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes." Nanotechnology 23.3 (2011): 035603.
    [22] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito. "Perspectives on carbon nanotubes and graphene Raman spectroscopy." Nano Letters 10.3 (2010): 751-758.
    [23] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim. "Raman spectrum of graphene and graphene layers." Physical Review Letters 97.18 (2006): 187401.
    [24] P. Král, and M. Shapiro. "Nanotube electron drag in flowing liquids." Physical Review Letters 86.1 (2001): 131.
    [25] S. Ghosh, A. K. Sood, and N. Kumar. "Carbon nanotube flow sensors." Science 299.5609 (2003): 1042-1044.
    [26] S. Ghosh, A. K. Sood, S. Ramaswamy, and N. Kumar. "Flow-induced voltage and current generation in carbon nanotubes." Physical Review B 70.20 (2004): 205423.
    [27] J. Liu, L. Dai, and J. W. Baur. "Multiwalled carbon nanotubes for flow-induced voltage generation." Journal of Applied Physics 101.6 (2007): 064312.
    [28] S. H. Lee, D. Kim, S. Kim, and C. S. Han. "Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes." Applied Physics Letters 99.10 (2011): 104103.
    [29] H. G. Park and Y. Jung. "Carbon nanofluidics of rapid water transport for energy applications." Chemical Society Reviews 43.2 (2014): 565-576.
    [30] A. Noya, H. G. Parka, F. Fornasieroa, J. K. Holta, C. P. Grigoropoulosb, and O. Bakajina. "Nanofluidics in carbon nanotubes." Nano Today 2.6 (2007): 22-29.
    [31] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim. "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature 438.7065 (2005): 201.
    [32] V. Lukose, R. Shankar, and G. Baskaran. "Novel electric field effects on landau levels in graphene." Physical Review Letters 98.11 (2007): 116802.
    [33] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk. "Electric field effect tuning of electron-phonon coupling in graphene." Physical Review Letters 98.16 (2007): 166802.
    [34] J. H. Ho, Y. H. Chiu, S. J. Tsai, and M. F. Lin. "Semimetallic graphene in a modulated electric potential." Physical Review B 79.11 (2009): 115427.
    [35] P. Dhiman, F. Yavari, X. Mi, H. Gullapalli, Y. Shi, P. M. Ajayan, and N. Koratka. "Harvesting energy from water flow over graphene." Nano Letters 11.8 (2011): 3123-3127.
    [36] J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou and W. Guo. "Generating electricity by moving a droplet of ionic liquid along graphene." Nature Nanotechnology 9.5 (2014): 378.
    [37] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and . E. Sheehan. "Reduced graphene oxide molecular sensors." Nano Letters 8.10 (2008): 3137-3140.
    [38] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstei. "Molecular doping of graphene." Nano Letters 8.1 (2008): 173-177.
    [39] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R.B. Kaner, and B.H. Weiller. "Practical chemical sensors from chemically derived graphene." ACS Nano 3.2 (2009): 301-306.
    [40] J. Lyklema. "Fundamentals of interface and colloid science. Volume 2: Solid-liquid interfaces. With special contributions by A. de Keizer, BH Bijsterbosch, GJ Fleer and MA Cohen Stuart." (1995).
    [41] J. Yin, Z. Zhang, X. Li, J. Yu, J. Zhou, Y. Chen, and W. Guo. "Waving potential in graphene." Nature Communications 5 (2014): 3582.
    [42] H. Zhong, Z. Wu, X. Li, W. Xu, S. Xu, S. Zhang, Z. Xu, H. Chen, and S. Lin. "Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow." Carbon 105 (2016): 199-204.
    [43] J. Yin, Z. Zhang, X. Li, J. Zhou, and W. Guo. "Harvesting Energy from Water Flow over Graphene?." Nano Letters 12 (2012): 1736-1741.
    [44] S. H. Lee, Y. Jung, S. Kim, and C. S. Han. "Flow-induced voltage generation in non-ionic liquids over monolayer graphene." Applied Physics Letters102.6 (2013): 063116.
    [45] R. Parsons. "The electrical double layer: recent experimental and theoretical developments." Chemical Reviews90.5 (1990): 813-826.
    [46] P. Attard. "Recent advances in the electric double layer in colloid science." Current Opinion in Colloid & Interface Science6.4 (2001): 366-371.
    [47] B. J. Kirby and E. F. Hasselbrink Jr. "Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations." Electrophoresis 25.2 (2004): 187-202.
    [48] A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. W. Nam. "Doping-induced tunable wettability and adhesion of graphene." Nano Letters 16.7 (2016): 4708-4712.
    [49] F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. B. Tasciuc, P. M. Ajayan and N. Koratkar. "Tunable bandgap in graphene by the controlled adsorption of water molecules." Small 6.22 (2010): 2535-2538.
    [50] 蘇州碳丰石墨烯科技公司 http://graphenechina.cnpowder.com.cn
    [51] G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, and Z. L. Wang. "Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface." ACS Nano 8.6 (2014): 6031-6037.
    [52] Y. Wang, J. Duan, Y. Zhao, B. He, and Q. Tang. "Harvest rain energy by polyaniline-graphene composite films." Renewable Energy 125 (2018): 995-1002.
    [53] E. Uesugi, H. Goto, R. Eguchi, A. Fujiwara, and Y. Kubozono. "Electric double-layer capacitance between an ionic liquid and few-layer graphene." Scientific Reports 3 (2013): 1595.
    [54] S. Sando and T. Cui. "A self-assembled graphene-based micro flow meter by streaming potential effect." Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017 19th International Conference on. IEEE, 2017.
    [55] B. Zhang and T. Cui. "High-perfermance and low-cost ion sensitive sensor array based on self-assembled graphene." Sensors and Actuators A: Physical 177 (2012): 110-114.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE